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T he deceased-donor kidney allocation system suffers from a severe shortage of available organs. We illustrate a mecha-
nism which can increase the supply of cadaveric kidneys in the United States. This supply increase exploits the fact

that under the current organ allocation policy, some kidneys remain unprocured in some procurement areas but would
be highly sought in other areas. The current kidney allocation policy procures within a donor service area (DSA) and
offers these kidneys first to patients in the DSA; if these offers are not accepted, the kidney will be offered within the
region (a cluster of DSAs); if these offers are not accepted, the kidney will be offered nationally. A deceased-donor organ
is procured if there is the belief that the offered organ will be transplanted (known as “intent”). We conduct an empirical
analysis of the donor and recipient data (at the DSA level) which reveals that the intent increases significantly with organ
quality, the median waiting time for a transplant, and higher competition. In particular, it shows that lower quality organs
are likely to be procured at a higher rate in DSAs with longer waiting times. Motivated by a new kidney allocation sys-
tem, we conduct a counterfactual study which shows that geographically broader sharing the bottom 15% quality kidneys
leads to stronger intent for the organ, thus increasing the supply of procured organs available for transplantation. The
expected increase in procured organs ranges from 58 (an increase of 0.4% of all procured kidneys) to 174 (an increase of
1.2%), depending on regional or national sharing.
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1. Introduction

The gap between the demand for and the supply of
cadaveric kidneys has continued to grow steadily.
There are currently over 98,000 End-Stage Renal Dis-
ease (ESRD) patients waiting for a transplantation in
the United States (U.S.); and the growth of the waiting
list of patients continues to outstrip the supply of
kidneys.1 The supply shortage in (deceased-donor)
kidneys is a first-order issue. The allocation policy is
effectively transformed into a rationing rule due to
this shortage, and a large number of deaths result
from this shortage every year.2 Any increase in the
supply of procured organs directly improves the
well-being of ESRD patients. Therefore, we seek a

mechanism to increase the supply of organs for trans-
plantation as our primary research focus. This differs
from most of the existing work in the operations
research literature which has focused on the demand
side of the deceased-donor allocation problem. We
focus on the procurement rate of organs from a given
set of donors as the source of supply by conducting
an analysis at the Donor Service Area (DSA) level,
and indeed ultimately find that by making simple
changes to the organ allocation policy which encour-
ages a greater sharing of lower quality organs, more
kidneys may be procured and supplied for
transplantation.
The procurement and transplantation of organs in

the United States operates within the Organ

2103

Vol. 27, No. 12, December 2018, pp. 2103–2121 DOI 10.1111/poms.12776
ISSN 1059-1478|EISSN 1937-5956|18|2712|2103 © 2017 Production and Operations Management Society



Procurement and Transplantation Network (OPTN)
which is governed by the United Network for Organ
Sharing (UNOS), authorized by the U.S. Congress.
For the purposes of organ transplantation, the United
States is divided geographically into 11 regions,
which are further divided into 58 DSAs. The procure-
ment of deceased-donor organs within each DSA is
administered by a local Organ Procurement Organi-
zation (OPO).3 Just like UNOS, each OPO is a
nonprofit entity regulated by the government,
although the OPO is directly responsible for arrang-
ing the recovery, testing, tissue typing of organs, and
packaging and transporting them to transplantation
hospitals. The OPO is also responsible for deciding
whether to procure an organ when it becomes avail-
able within the DSA. The procurement is done
according to the Final Rule4 issued by the Department
of Health and Human Services (DHHS). The procure-
ment occurs unless one of the following occurs: (i) the
donor does not meet criteria for eligible donor, (ii) the
organ has been ruled out by basic donor information
or by laboratory data prior to the donor entering the
operating room for excision of organs, (iii) the family
does not agree to donate the organ, (iv) the search for
a recipient for that organ has ended unsuccessfully
prior to the donor’s entrance into the operating room.
If none of these four conditions is true, the DHHS
Final Rule states that “intent” is present and the pro-
curement may proceed. We will refer to this “intent”
throughout the remainder of the study as equivalent
to procuring the organ.
Unfortunately, not every medically acceptable

(deceased-donor) organ is procured and offered for
transplantation. This is rather surprising given the
severe organ shortage. Understanding the subtleties
of the organ allocation system sheds some light on
the reasons for this. Upon hearing of the availability
of a cadaveric organ, the OPO must assess that
intent is present and if so, the organ is procured.
However, if the OPO deems that there will not be a
willing recipient, typically because the organ may
be of lower quality, the organ may not be procured.
The intent is established prior to the donor entering
the operating room. If the OPO believes there is at
least one patient in the DSA who would seriously
consider accepting the organ (after deeming the
organ is medically acceptable and the donor’s fam-
ily has given consent), then intent is established and
procurement will proceed (i.e., “intent” = “procure-
ment”). Our dataset includes the information of
whether or not an organ is procured. Thus, we
observe in the data whether intent was expressed
for each medically eligible organ.
Our primary research objective is to investigate the

extent of additional kidneys which may be procured
if some small changes to the UNOS allocation policy

are considered. These kidneys are those which are
currently not procured due to their marginal quality
and are most likely concentrated in some areas of the
country (the high quality kidneys are procured
throughout the country; it is the lower quality kidneys
which may not be procured in some areas). The
change to the UNOS policy we study concerns a
greater degree of sharing of these lower quality
organs to encourage higher levels of procurement of
them. To further understand this, in our empirical
study, we investigate how the three factors (organ
quality, median waiting time in the DSA, transplant
center competition in the DSA) affect intent in those
different DSAs. The organ quality varies from donor
to donor. Moreover, the median waiting times and
the degree of transplant center competition vary
across different DSAs; so does the intent. The varia-
tion in these three factors helps us glean the relation-
ship between the intent and these factors. Building on
this analysis, through a counterfactual analysis we
then determine the extent of additional kidneys of
marginal quality which may be procured under some
targeted small changes to the UNOS allocation policy.
UNOS’ geographically-based procedure for seeking

a recipient for an organ is the following. First, the
OPO is obliged to seek a recipient from the waiting
list within the DSA; if no willing recipient is found in
the DSA, the OPO seeks a willing recipient within the
region (but outside the DSA); if there are no willing
recipients within the region, the organ may then be
offered to patients of the waiting list nationally (i.e.,
outside the region). Given the limited time until the
donor’s entrance to the operating room, the intent
(procurement) is strongly correlated with the accep-
tance of the organ (by a recipient in the local DSA).
The slight policy modification we are considering is
for the OPO to seek recipients for the lower quality
kidneys within the region (or the nation) immedi-
ately, without seeking them within the DSA first, that
is, the broader sharing of lower quality organs.
We first develop and analyze a game theoretical

model of a DSA to study the patients’ accept/reject
decisions for deceased-donor organ offers. In essence,
patients decide between accepting an organ offer or
waiting for a better quality organ. This model helps
us understand how the acceptance probability of a
deceased-donor organ (and hence, the intent for it)
change with the organ quality and the congestion in a
DSA (e.g., median waiting time for a transplant) and
helps develop testable hypothesis related to organ
quality and waiting time until transplantation. Three
hypotheses pertaining to how intent is affected by
organ quality, waiting time until transplantation, and
competition between transplant centers in a DSA (mo-
tivated by the literature) are defined prior to testing in
our empirical model. The estimation is done using an
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endogeneity-corrected5 probit model, described in
more detail in section 5.
We find that the organ quality is the most impor-

tant factor determining intent. In particular, the
intent (and the procurement rate) increases as the
quality improves. We also observe that, when con-
sidering all the data, procurement rate in a DSA also
increases as the median waiting time until transplan-
tation and the competition among transplant centers
in that DSA increase. However, the significance of
these two variables (i.e., waiting time until transplan-
tation and the competition) is not kept at all times
when we partition the data by organ quality or blood
type. Importantly, we find that while the waiting
time until transplantation is significant when esti-
mating using only the lower quality organs, it is not
significant when considering higher quality organs.
This suggests that OPOs with substantial median
waiting times are more likely to procure the lower
quality organs knowing there is a likelihood that
someone in the DSA will accept it.
Using the results of the probit estimation, we then

undertake a counterfactual study to consider how the
supply of organs may be enhanced by an adjustment
of the UNOS allocation policy amongst the lower
quality organs. By considering a broader sharing of
the lowest quality kidneys (bottom 15%), e.g., region-
ally or nationally, we observe that more of those
organs may be procured under this policy than under
the original policy. This policy change is suggested as
part of the proposal to substantially revise the kidney
allocation policy and the new policy became effective
in December 2014.6 The analysis in section 6 shows
that 58 additional organs will be procured per year
under regional sharing of the bottom 15% of the
organs, increasing the supply of the bottom 15% qual-
ity kidneys by 3.3%. Similarly, 129 additional organs
will be procured per year under national sharing of
the bottom 15% of the organs, which reflects the addi-
tion of a small- to medium-sized DSA (a supply
increase of 7.3% among the bottom 15% quality kid-
neys). In addition, to inform policy makers further,
we extend the counterfactual study and quantify the
impact of varying the quality threshold for broader
sharing from 15% to 20%. This further fine-tuning of
the quality threshold can increase the supply of pro-
cured deceased donor kidneys by 174 per year. This
increase is significant and corresponds to an addition
of a medium-sized DSA, or an increase of 1.2% of the
total kidney supply on average each year.
The remainder of the study is structured as follows.

Section 2 provides a literature review. Section 3 devel-
ops a game theoretical model of a DSA and describes
the transplant center competition by citing the rele-
vant literature, both of which help formulate testable
hypotheses. Section 4 describes the data. Section 5

introduces the econometric method and the estima-
tion results. The counterfactual study is undertaken
in section 6. Section 7 concludes. Proofs, additional
details of the calculations of variables and figures, the
details of the endogeneity correction method, addi-
tional estimation results and tables are provided in
Appendices.

2. Background and Literature Review

U.S. Congress passed the National Organ Transplant
Act (NOTA) in 1984 to address the deceased-donor
organ shortage. Since the passing of this legislation,
UNOS has managed the allocation of deceased donor
organs in the United States. The current kidney alloca-
tion policy of UNOS is a point system that prioritizes
the potential transplant candidates based on medical
criteria and the waiting time; see Organ Procurement
and Transplantation Network (2014a) for details. Su
and Zenios (2004) note that “The continued shortage
of organs and the associated explosion in waiting
times has contributed to a convergence of this point
system to a system that resembles first-come-first-
served (FCFS).” The recent work Schummer (2016)
explores the welfare implications of increasing the
acceptance of lower quality organs by (the highly
ranked) patients on the waitlist. The author considers
a stylized model where an infinite number of ordered
patients are present and make accept/reject decisions.
Schummer (2016) shows that not interfering with
patients’ decisions is Pareto dominant if the patients
are risk-neutral or risk-averse and patient. However,
when they are impatient the result no longer holds. In
particular, there is a trade-off to be made in that case,
e.g., highly ranked patients may suffer whereas those
with lower rankings may benefit from increasing the
acceptance of lower quality organs by the highly-
ranked patients. The author also discusses the impli-
cations of the result for the “organ spoilage” problem
because the organs may spoil during the sequential
offer process due to the limited cold ischemia time.
Opelz and D€ohler (2007) state that cold ischemia

time up to 18 hours does not have much influence on
the graft survival rates, but cold ischemia time longer
than 18 hours can be detrimental. The geographically
tiered structure of the policy makes it difficult for
organs to be shared across different DSAs. Under the
current policy, the vast majority (more than 70%, see
Davis (2011)) of deceased donor kidneys are trans-
planted locally. Therefore, the differences in supply
and demand characteristics of different DSAs lead to
a significant disparity in waiting times and access to
transplantation across different DSAs. Davis (2011)
notes that “The overall median waiting time to receive
kidney transplantation during 2000–2009 varies from
0.93 to 4.14 years depending on a patient’s local area
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of listing.” This discrepancy is even more pronounced
for patients with blood types B and O.
The demand side (i.e., the allocation of deceased

organs) of the organ transplantation has received sub-
stantial attention in the operations research literature.
To design optimal allocation policies, researchers seek
to match patients and organs to maximize social wel-
fare, see Righter (1989), David (1995), David and
Yechiali (1990), and David and Yechiali (1995). Zenios
et al. (2000) explore the efficiency-equity trade-off
and propose a dynamic index policy for deceased-
donor kidney allocation. Akan et al. (2012) explore
the trade-off between medical urgency and efficiency
in the liver allocation system. Su and Zenios (2004,
2005, 2006) study the impact of patient choice on the
kidney allocation system. Bertsimas et al. (2013)
design a scalable, data-driven allocation policy which
incorporates fairness constraints. Ata et al. (2016a)
provide an analysis of scoring-based allocation poli-
cies taking into account recipient’s forward-looking
behavior. CONSAD (1995), Pritsker et al. (1995),
Zenios et al. (1999), Taranto et al. (2000), Kreke et al.
(2002), and Shechter et al. (2005) use simulation mod-
els to study the impact of possible changes to the
organ allocation policy.
Davis (2011) proposes a probabilistic sharing of

available kidneys in neighboring DSAs to address the
geographic inequities. Ata et al. (2016b) propose an
operational solution, using jets to multiple-list
patients to ameliorate the geographic inequity. Their
proposal is an incremental solution within the exist-
ing system and does not require a policy change. Hall-
dorson et al. (2013) consider the effect of competing
transplant centers within a DSA and find that liver
patients are more likely to accept a donated liver
under competition than when no competition exists.
Several researchers consider an individual patient’s
problem of accepting/rejecting an organ offer while
waiting for a transplant; see for example, David and
Yechiali (1990), Ahn and Hornberger (1996), Horn-
berger and Ahn (1997), Alagoz et al. (2004, 2007a,b),
Sandikci et al. (2008), and Sandikci et al. (2013).
Virtually the entire operations research literature

takes the supply of organs as given and focuses on
the allocation problem. An exception to this is the
work on paired kidney exchange, see for example
Roth et al. (2005, 2007) and Zenios (2002); also see
Ashlagi and Roth (2011). This stream of literature
aims at maximizing the use of living donors by resolv-
ing various matching difficulties between recipient-
donor pairs, which may lead to an increase in the
supply of living donors. In contrast, we focus on
understanding ways of increasing the supply of pro-
cured deceased-donor organs. Another exception is
Arora and Subramanian (2017) who analyze the sup-
ply side entities’ (i.e., OPO and transplant hospital)

decisions on societal outcomes. They show that there
exist misalignments between the social planner and
supply side players in the cadaver organ donation
value chain and propose a pareto-improving contract
that achieves socially optimal performance.
Recent strategies to increase the supply of organs in

practice include the use of expanded criteria donor
(ECD) kidneys7 and donation after cardiac death
(DCD) kidneys; see for example Metzger et al. (2003)
and O’Connor and Delmonico (2005). Medical
research shows that short-term (Stratta et al. 2004)
and the intermediate-term (Stratta et al. 2006) out-
comes of transplants using ECD organs are compara-
ble to those using standard criteria organs. Our work
complements these efforts and helps understand
what factors affect the procurement rate of organs.
Thus, it can help increase the supply of deceased-
donor organs further.
Our study is also related to the growing body of

literature on how workload (provider load or patient
waiting time) affects clinical decisions and patient
outcomes. KC and Terwiesch (2012) show that at
higher levels of intensive care unit (ICU) occupancy, a
patient’s early discharge probability increases. How-
ever, early discharge is associated with increased like-
lihood of revisiting the ICU in the future. A similar
adverse effect of workload is demonstrated in a study
by Kuntz et al. (2014) which shows that when occu-
pancy levels exceed a certain tipping point, a patient’s
mortality risk increases significantly. A recent paper
by Freeman et al. (2017) shows that increased levels of
workload have varying effects depending on the com-
plexity of a patient’s need. In particular, they find that
gatekeeper providers display a rationing effect of
resource-intensive services for noncomplex cases,
whereas they increase the rate of specialist referrals
for complex cases. KC and Terwiesch (2009), Kim
et al. (2014), Tan and Netessine (2014), Batt and Ter-
wiesch (2017), and Jaeker and Tucker (2016) are other
operations management papers in this stream of
research. Different from these papers, our study
investigates the impact of transplant center congestion
on the deceased donor kidney procurement decisions.

3. Hypotheses Development

3.1. A Game Theoretical Model
This subsection develops an overloaded fluid model
of an OPO and considers patients’ accept/reject deci-
sions for deceased-donor organ offers. The model
helps glean insights about what factors affect the
acceptance probability of an organ, and hence, the
OPO’s intent. We formalize the findings of the model
as hypotheses and test them in section 5. As men-
tioned earlier, when a kidney becomes available, it is
procured if the OPO expresses intent. This intent is
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not a guarantee that the organ will ultimately be
transplanted, but if and only if an OPO shows intent,
the organ will be procured; that is, “intent” = “pro-
curement.” Although the OPO’s intent is not captured
directly in our model, the intent is the result of the
OPO’s belief that at least one patient in the DSA is
willing to seriously consider accepting the organ. The
model derives the equilibrium quality threshold of
patients accepting organ offers in a DSA which can
serve as a proxy for the OPO’s intent.
To be specific, we consider a DSA in isolation and

develop a stylized game theoretic model which
incorporates: (i) the organs offered by the OPO are of
varying quality, and thus, correspond to different
post-transplant life years; and (ii) patients can turn
down organ offers with no penalty.
Patients may die while waiting for a transplanta-

tion. We assume that the hazard rate of time-to-death
distribution, denoted by c(t) for t ≥ 0, is nondecreas-
ing. The expected post-transplant life years associated
with an organ takes a value in the range ½L; �L�, where
�L [ 1=cðtÞ for all t ≥ 0, which means that patients
prefer the highest quality kidney to staying on dialy-
sis at all times.8 The post-transplant life expectancy L
associated with an organ can be thought of as the
organ’s quality as there is a strong correlation
between the two. Let k and G(y) denote the patient
arrival rate and the quantity (measure) of organs
whose life expectancy is less than or equal to y years,
respectively. We assume that G is continuously differ-
entiable on ½L; �LÞ but has a jump at �L, that is,

DGð�LÞ ¼ Gð�LÞ � Gð�L�Þ[ 0; ð1Þ

which corresponds to assuming that arrival rate of
the number of highest quality organs is not zero. In
our model, these organs are always transplanted, as
will be seen below. Moreover, the high quality
organs are always transplanted in practice. There-
fore, DGð�LÞ can be viewed as the arrival rate of
organs with sufficiently high quality so that they are
always transplanted.
We assume that G, k, and c(�) are common knowl-

edge among patients. Each patient chooses a thresh-
old life-expectancy for organs acceptable to him as a
function of how long he has been waiting. That is, the
patient is willing to accept any organ whose life
expectancy is above a threshold, but not otherwise.
We assume a stationary (overloaded) fluid model of
the system, that is, the model parameters are not time
varying; and we are interested in the steady-state
equilibrium behavior of the system. Namely, the
transplant waiting list will be stationary in steady
state. Let s denote the longest waiting time in that sta-
tionary system which is determined endogenously.
Then the strategy of a patient is denoted by a function

l : ½0; s� ! ½L; �L�, where l(t) denotes the life-years
threshold associated with the lowest quality organ a
patient, who has waited for t time units, is willing to
accept. We restrict attention to (pure strategy) sym-
metric equilibria, where each patient chooses the
same l(�). Also, without loss of generality9 we restrict
attention to nondecreasing l(�) functions. That is,
patients become more selective as they wait longer
because they are closer to the top of the queue. More-
over, it is straightforward to argue that10 lðsÞ ¼ �L.
Let {Q(t): t 2 [0, s]} denote the stationary queue

length profile. That is, Q(t) denotes the intensity of
patients who waited for t time units in the system.
The following flow-balance equations characterize the
stationary queue length profile:

Qð0Þ ¼ �; ð2Þ
Q0ðtÞ ¼ �cðtÞQðtÞ � G0ðlðtÞÞl0ðtÞ; 0\t\s; ð3Þ

QðsÞ ¼ DGð�LÞ; ð4Þ
where the last equation follows since lðsÞ ¼ �L and
that, the intensity of patients who have waited for s
time units, that is, Q(s), must equal the intensity of
organs of �L life years, that is, DGð�LÞ.
The following proposition characterizes the (pure

strategy) symmetric Nash equilibrium for patients’
accept/reject decisions and the resulting queue length
profile.

PROPOSITION 1. The patients’ equilibrium decisions are
characterized by the threshold function l(�) given by

lðtÞ ¼ max

�
L; exp

�Z t

0

cðsÞds
��

�L exp

�
�
Z s

0

cðsÞds
�

þ
Z s

t
exp

�
�
Z s

0

cðuÞdu
�
ds

��
; ð5Þ

where s is the unique solution of the following equation:Z s

0

exp

Z s

0

cðuÞdu
� �

dGðlðsÞÞ ¼ �: ð6Þ

The corresponding stationary queue-length profile is char-
acterized by

QðtÞ ¼ exp �
Z t

0

cðsÞds
� �

��
Z t

0

exp

Z s

0

cðuÞdu
� �

dGðlðsÞÞ
� �

for t\s;

ð7Þ
and QðsÞ ¼ DGð�LÞ. Moreover, as k increases, s increases
strictly, that is, patients wait longer and l(t) decreases
strictly (unless it equals L) for all t < s.
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The l(t) curve is the equilibrium solution of all the
patients in the DSA, defining their willingness to
accept an organ of a specific quality at a particular
time since they listed as a transplant patient. The
interpretation of l(t) is that it reflects the OPO’s intent.
The OPO knows the population in its DSA and the
profile of patients who are listed at transplant centers
in the DSA and thus, the patient’s acceptance thresh-
old acts as a surrogate for the OPO’s statement of
intent, as discussed earlier. Proposition 1 shows that
as the DSA gets more congested (i.e., k and s increase),
patients waiting for a transplant are willing to accept
a lower quality organ (i.e., l(t) decreases for all t).
The expressions in Proposition 1 simplify as shown

in Corollary 1 below if the death rate is constant over
time.

COROLLARY 1. When the death rate is constant, that is,
c(s) = c, the patients’ equilibrium decisions are
characterized by the threshold function l(�) given by

lðtÞ ¼ max L;
1

c
þ �L� 1

c

� �
e�cðs�tÞ

� �
; t 2 ½0; s�; ð8Þ

where s is the unique solution of the following equation:

ecs
Z �L

lð0Þ
u� 1

c

� �
dGðuÞ ¼ � �L� 1

c

� �
: ð9Þ

Moreover, the stationary queue-length profile is character-
ized by

QðtÞ ¼ e�ct �� ecs
Z lðtÞ

lð0Þ

u� 1=c
�L� 1=c

dGðuÞ
" #

for t\s:

ð10Þ
Proposition 1 shows that as the DSA gets more con-

gested, that is, as k increases, the waiting time
increases, and the patients become less selective in the
sense that they are willing to accept lower quality
organs. This, in turn, increases the acceptance proba-
bility of organs, and hence, the intent. We also see
from Proposition 1 that organs with life expectancy l
(0) or higher are accepted (and transplanted), whereas
those with life expectancy lower than l(0) are rejected.
Therefore, we arrive at the intuitive conclusion that
the intent is stronger for higher quality organs. We
formalize these insights into the following two testa-
ble hypotheses.

HYPOTHESIS 1. As the organ quality increases, the
OPO’s intent increases.

This hypothesis is motivated by the nondecreasing
nature of the threshold function l(t). As the organ

quality improves, more patients within the DSA will
be willing to accept the organ.

HYPOTHESIS 2. As the waiting time until transplantation
in a DSA increases, the OPO’s intent increases.

This hypothesis suggests that as the waiting time
across all patients in the DSA increases (and hence,
congestion increases), the willingness of patients to
accept an organ also increases. This hypothesis fol-
lows from Proposition 1 and reflects the patients’
increased willingness to accept a potentially lower
quality organ as the waiting time in the DSA
increases.

3.2. Transplant Center Competition
There are 272 transplant programs in the United
States certified (for each organ type) by the Centers
for Medicare and Medicaid Services (CMS) to perform
transplants. As mentioned in section 1, the United
States is geographically divided into 58 DSAs and
each DSA can be composed of one or more transplant
centers. There is significant variance in the number of
transplant centers across different DSAs; seven DSAs
have a single center serving the patients, while some
others have ten or more centers competing with each
other. Figure 1 displays a histogram of the number of
transplant centers in each DSA, showing the heteroge-
neity of the number of centers.
These transplant centers have varying objectives in

terms of transplant volume, costs, and outcomes. In
order to cover their fixed costs, transplant centers
must perform a minimum number of transplants and
maintain their market shares in their DSAs. In addi-
tion, they aim to receive an incremental profit with
each additional organ they procure. As a result, trans-
plant centers in DSAs with multiple centers can
behave more aggressively in terms of patient accep-
tance and exhibit more demand for lower quality
organs. On the contrary, transplant centers with no or

Figure 1 Histogram of the Number of Transplant Centers at Each DSA
[Color figure can be viewed at wileyonlinelibrary.com]
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little competition can create a greater organ wastage.
We elaborate more on this center heterogeneity in sec-
tion 4 where we highlight certain aspects of and
trends in the current kidney allocation system.
The following hypotheses are inspired by Halldor-

son et al. (2013), Adler et al. (2014), and Cho et al.
(2015) all of which analyze the impact of the degree of
competition on the transplantation system. In particu-
lar, Halldorson et al. (2013) examine the association
between competition among transplant centers and
post-transplant outcomes, using data from cadaveric
liver transplant recipients who underwent transplan-
tation between 2003 and 2009. They find that trans-
plant centers facing higher levels of competition are
associated with increased patient access for sicker
patients and increased utilization of higher risk (i.e.,
lower quality) organs in comparison to DSAs without
competition. In a similar vein, Adler et al. (2014)
demonstrate that higher proportion of riskier kidneys
are used in the DSAs with higher competition using
data from patients who underwent renal transplanta-
tion between 2003 and 2012. Using kidney patient
listing data and the number of kidneys transplanted
in 2011, Cho et al. (2015) indicate that competition
increases the patient access (i.e., higher percentage of
patients tend to be listed for transplant). However,
Cho et al. (2015) report that the percentage of patients
receiving transplants is not different at varying levels
of competition among transplant centers. Combining
the findings of these papers leads to inconclusive
results regarding the intent of an OPO; that is, Hall-
dorson et al. (2013) and Adler et al. (2014) show a
positive association between competition and intent,
whereas Cho et al. (2015) do not observe a significant
impact of competition on the intent. Hence, we test
the following two alternative hypotheses regarding
competition:

HYPOTHESIS 3A. As the competition within a DSA
increases, the OPO’s intent increases.

HYPOTHESIS 3B. As the competition within a DSA
increases, the OPO’s intent does not change.

We use the Herfindahl–Hirschman Index (HHI) as
a measure for competition between transplant centers
in the DSA, similar to Halldorson et al. (2013), Adler
et al. (2014), and Cho et al. (2015). The HHI is a com-
monly accepted standard of economic measure of
competition among players in a particular industry or
market. There are several papers in the operations
management literature that measure market competi-
tion using HHI in a healthcare setting (see, KC and
Staats 2012, Andritsos and Tang 2014, and Lu and Lu
2017). The details of the calculation of the HHI

variable is provided in section 5. Next we describe
our data sources, the variables, the models, and test
the above hypotheses.

4. Data Description

4.1. Data Sources
The data for this study comes from UNOS’ Standard
Transplant Analysis and Research (STAR) Files. Our
dataset contains information regarding (i) all
deceased kidney donors (i.e., donor data) and (ii)
waiting list and transplants performed (i.e., recipient
data) in the United States. Our period of study is from
January 1, 2000 through June 30, 2010. Overall, we
have detailed information of 76,866 deceased donors
and 111,579 actual or potential recipients. Table 1
shows some descriptive statistics of the relevant vari-
ables we use in our analysis. In Table 1, Yi is the indi-
cator variable showing if organ i is procured (i.e.,
dependent variable), KDRIi is the quality of organ i,
Wjt is the median waiting time (in years) until trans-
plantation in DSA j in quarter t, Wjkt is the median
waiting time (in years) until transplantation in DSA j
for blood-type k in quarter t, and HHIjk is the HHI for
blood type k in DSA j. The term HHIjk captures the
competition between transplant centers in a DSA.
This index is calculated by summing the squares of
the market share of each transplant center in a DSA.
We define the market share of a transplant center by
using the total number of registered patients during
our period of study at each DSA for each blood type.
The HHI ranges from 1/n to 1 where n is the number
of transplant centers in a DSA. The closer the HHI
gets to zero, the greater the level of competition
within a DSA. Our competition variable (HHIjk), the
kidney quality variable (KDRIi), and the waiting time
variable (Wjt) will be discussed further in section 5.
The waiting time and the competition variables are
defined at the DSA level, and the quality variable is
defined at the donor level.
The donor data set contains detailed information

regarding each deceased kidney donor such as a

Table 1 Descriptive Statistics of the Dependent and the Independent
Variables

Variable Sample size Mean SD Median

Yi 76,866 0.90 0.30 1.00
KDRIi 76,399 1.33 0.51 1.21
Wjt 2516 1.79 1.00 1.63
HHIjk 244 0.41 0.28 0.33
Wjk={A}t 2510 1.40 0.79 1.26
Wjk={O}t 2508 2.03 0.95 1.91
Wjk={AB}t 1077 1.04 0.89 0.84
Wjk={B}t 2214 2.25 1.30 2.04

Notes. i: index for donor, j: index for DSA, t: index for quarter, k: index
for blood type.
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disposition code, the date of recovery, demographic
information of the donor, and several health indica-
tors. The disposition code variable is especially
important for our purposes. It helps identify the
intent. There are 6 disposition codes for each kidney:
(1) organ consent not requested, (2) organ consent
requested but not obtained, (3) organ consented but
not recovered,11 (4) organ recovered for reason other
than transplant, (5) organ recovered for transplant but
not transplanted, and (6) organ transplanted. When a
donor kidney is assigned codes 1, 2, or 3, then it was
not recovered; that is, Yi = 0. The remaining codes 4,
5, and 6 indicate that the kidney was recovered from
the donor; that is, Yi = 1. As indicated in Table 1, the
mean value of Yi equals 0.9 which means that 7,687
observations have Yi = 0 (i.e., 10% of the sample size)
and the remaining 69,179 observations have Yi = 1.
The recipient data contains information regarding

transplants (living and deceased donor types) and
listings on the kidney, pancreas, and kidney/pan-
creas waitlists prior to September 3, 2010. Detailed
demographic and health information of the recipient
and the donor (if there is any) is available in this data-
set. An entry consists of a listing, a transplant, or both
(if the listing resulted in a transplantation).

4.2. Data Trends
This subsection presents summary statistics of the
data to highlight certain aspects of and trends in the
kidney allocation system. As illustrated by Figure 2,
while the number of deceased donors has remained
relatively flat over the span of time our data covers,
there has been a marked increase in the additions to
the waiting list. This indicates not only that there is a
substantial gap between the supply and demand for
kidneys but that the gap is rapidly expanding. There
are two deceased donor classifications to specify the
quality of a donated kidney: (i) expanded criteria
donors (ECD) and (ii) standard criteria donors (SCD).
SCD donors often have fewer risks associated with

graft failure, whereas ECD organs typically relate to
higher risks of earlier graft loss (Metzger et al. 2003,
Pascual et al. 2008). All candidates are eligible to
receive SCD kidneys; however, ECD kidneys are
allocated only to candidates who have indicated a
willingness to consider them.
Figure 3a shows the percentage procured and not

procured donors by SCD-ECD breakdown and the
proportion of ECD kidneys procured has grown.
However, Figure 3b shows that there are similar num-
bers of not procured donors in each category (in abso-
lute terms), so it is not simply that only inferior
organs will be added to the supply. Collectively, over
the 2000–2009 period, these two nonprocured ele-
ments (ECD and SCD) appear to be a new growing
source of kidneys for transplantation.
Figure 4 illustrates an example of geographical het-

erogeneity. In Figure 4a, we see that there is a large
and consistent difference in the median waiting time
until transplantation for recipients in two geographi-
cally different DSAs. The median waiting time until
transplantation in NYRT (New York Organ Donor
Network) almost always exceeds two years while it is
always less than a year in UTOP (Intermountain
Donor Services), a DSA based in Utah. Moreover, we
see that the quality of procured organs in these areas
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can differ markedly. In the remainder of the study,
we use the Kidney Donor Risk Index (KDRI) quality
metric, which was introduced by UNOS in its most
recent kidney allocation policy to fine-tune the binary
SCD-ECD donor kidney quality classification system
explained above. The KDRI is reverse-scaled: a high
number indicates lower quality than a low number.
Figure 4b shows the lowest quality organ procured

in NYRT is consistently lower quality than the highest
quality organ not procured in UTOP, in every year of
our study. This simple comparison shows that there was
no intent in UTOP for organs for which intent would have
been easily given in NYRT. That is, there are organs of a
quality not being procured in UTOP which would
have been readily procured but not necessarily
accepted in NYRT since they exceed the lowest qual-
ity organs procured in New York. Similar stories
appear among several other OPOs nationally.
Next, we observe in Figure 5a that the average qual-

ity of transplanted kidneys has gradually worsened
over time, perhaps reflecting that demand is progres-
sively outstripping the supply of organs as shown in
Figure 2, as well as the increased usage of ECD kid-
neys in recent years. Figure 5b supports two observa-
tions. First, it shows the relationship between the

waiting time to transplant and the quality of the
accepted organs. Within an OPO, the quality of the
kidney received does not appear to be correlated with
the median waiting time. Second, Figure 5b illustrates
that the waiting time until transplantation for the
CAOP OPO (OneLegacy, an OPO based in Los
Angeles) is twice as long as for the ORUO OPO (Paci-
fic Northwest Transplant Bank, an OPO based in Port-
land, Oregon), a heterogeneity reflected across all 58
OPOs. There is also a similar heterogeneity across
blood types, with longer average wait times for blood
type B and O compared with types A and AB.
Finally, Figure 6 shows the average HHI by year

and two blood types of the same two OPOs used in
Figure 5b. Traditionally, blood types B and O candi-
dates experience the longest wait time, so we display
the time trend of competition for these two blood
types. While the competition for organs does not
change significantly over time in an OPO, the compe-
tition level across different OPOs can be drastically
different. We observe in Figure 6 that CAOP OPO kid-
ney transplant market (has four transplant centers) is
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more competitive than that of ORUO OPO (has three
transplant centers). The average HHI at CAOP OPO
varies between 0.1 and 0.3; whereas the average HHI
at ORUO OPO is always higher (less competition)
and varies between 0.3 and 0.8. In addition, there is
heterogeneity in competition across blood types
within the same OPO. We also observe a similar trend
at the aggregate level, the average HHI of all OPOs by
year doesn’t vary much when the data is broken
down by the blood type (varies between 0.5 and 0.65),
however there exist differences across blood types.
There seems to be slightly more competition for blood
type O compared to blood type B (see, Appendix S3,
Figure C9).

5. Empirical Model

5.1. Variables Affecting the Acceptance
Probability of a Kidney
5.1.1. Waiting Time until Transplantation in a

DSA. The waiting time is one of the primary determi-
nants of patients’ priority and decisions in the kidney
allocation system. We calculate the median waiting
times of all patients who had transplants at each DSA
during each quarter (between the first quarter of 2000
and the second quarter of 2010) by blood type (Wjkt);
see Appendix S2 for the details of the calculation of
these waiting times and all other relevant variables.
As mentioned in section 1, there are multiple sources
of significant variation in the waiting times including
different DSAs and different blood types. This differ-
ence is especially significant when one compares
blood types O and B to A and AB and also across dif-
ferent DSAs.

5.1.2. Kidney Donor Risk Index. To measure the
quality of offered kidneys, we use KDRI following the
medical literature. This index and its mathematical
model was first developed by Rao et al. (2009); see
Organ Procurement and Transplantation Network

(2014b) for further details. This index converts a set of
donor characteristics into a single number that cap-
tures the risk of graft failure after kidney transplant
(i.e., an estimate of the relative risk of a graft failure
after transplant of a particular donor compared to the
median donor). The calculated score for each donor
comes from “mathematical models based on a retro-
spective analysis of data collected by the Scientific
Registry of Transplant Recipients on donor and reci-
pient characteristics over the past several years” (Hip-
pen et al. 2011, p. 1285). The main purpose of KDRI is
to help transplant professionals better evaluate the
quality and appropriateness of deceased donor kid-
neys and also to assist potential candidates in making
more informed decisions. There are 10 factors consid-
ered in calculating the KDRI. These factors are donor
age, height, weight, ethnicity, history of hypertension,
diabetes status, serum creatinine level, cause of death,
Hepatitis C Virus status, and DCD (donation after cir-
culatory death) status. A more detailed explanation is
available in Appendix S2 including the coefficient
estimates obtained from the graft survival model of
Rao et al. (2009) (Appendix S5, Table E8). KDRI has
several advantages over the currently used deceased
donor classifications (i.e., ECD and SCD). First, KDRI
is based on ten different donor factors, whereas ECD/
SCD classification is based on only four factors. Sec-
ond, it is a continuous number which enables more
detailed differentiation of donor kidney quality com-
pared to the dichotomous ECD and SCD classifica-
tion. Third, the new kidney allocation policy uses
KDRI as a measure of kidney quality.

5.1.3. Competition Among Transplant Centers. We
also explore the effect of competition among trans-
plant centers within a DSA. Different OPOs have
varying numbers of transplant centers within their
service boundaries (DSAs); see Figure 1. Following
the results in Halldorson et al. (2013), Adler et al.
(2014), and Cho et al. (2015), we conjecture that the

Figure 6 Average HHI by Blood Types B and O Over Time in Two OPOs [Color figure can be viewed at wileyonlinelibrary.com]
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competition may play a role in the procurement deci-
sions and should be controlled for in the regression
analyses below. We use the HHI as a measure for
competition among transplant centers in the DSA. We
first calculate the total number of patients registered
at transplant center c by blood type k (kck) during the
period of our study (January 1, 2000 through June 30,
2010). We also calculate the total number of registered
patients at each DSA j for each blood type k by adding
the total number of registered patients at its trans-
plant centers (

P
c2Xj

�ck where Ωj represents the set of
transplant centers in each DSA j). The market share of
each transplant center by blood type is then

sck ¼ �ckP
c2Xj

�ck
for transplant center c in DSA j. The

HHI is calculated as

HHIjk ¼
X
c2Xj

s2ck:

5.2. Econometric Method
In this subsection, to model the event of procurement
(hence, intent), we use the discrete choice model of
binary probit, which specifies the probability that a
person (in our case, an OPO) chooses one of two alter-
natives. The probability is expressed as a function of
observed variables. In our model, this is the probabil-
ity of procuring a donor’s kidney and the choice set is
whether or not the donor’s kidney is procured.
Discrete choice models can be derived from utility

maximization behavior. We represent the utility that
DSA j obtains from procuring a kidney from donor i
by Uij(1); the utility from the decision to not procure,
denoted by Uij(0), equals to zero. Letting Yi denote the
procurement decision (i.e., Yi = 1 if the kidney from
donor i is procured, and Yi = 0 otherwise), we express
the utility function as follows:

UijðYiÞ ¼ b0xij þ eij; if Yi ¼ 1;
0; otherwise;

�
ð11Þ

where xij denotes the observable variables (e.g., attri-
butes of the kidney from donor i and attributes of
DSA j), whereas ɛij denotes the utility from attri-
butes that the researcher does not observe. The vec-
tor b denotes the parameters to be estimated. In our
analysis, xij = (KDRIi, Wjkt, HHIjk)

0
where KDRIi rep-

resents the kidney quality index of deceased donor
i, Wjkt represents the median waiting time until
transplantation of all patients with the same blood
type k (k 2 {A, B, AB, O}) who had transplants at
DSA j (j 2 {1, . . ., 58}) during each quarter t
(t 2 {1 . . ., 42}), and HHIjk is the competition vari-
able measured by HHI at DSA j for each blood type
k. We denote the probability that the organ from
donor i in DSA j is procured by Pij, which is given
as follows:

Pij ¼ PrðYi ¼ 1Þ ¼ PrðUijð1Þ[Uijð0ÞÞ ¼ Uðb0xijÞ;

where Φ(�) is the cumulative distribution function of
the standard normal distribution since the probit
model assumes that ɛij is standard normally dis-
tributed.12

One potential challenge in estimating the parame-
ters of discrete choice models (e.g., logit or probit
models) is the possibility that some component of the
utility model that is presumed exogenous is in fact
endogenous. In the literature, the term “endogeneity”
is used to describe a model in which one (or more)
unobservable variable(s) is (are) correlated with
observable covariates. Failure to account for this
endogeneity in an econometric model results in a
violation of the independence assumption which is a
necessary condition for obtaining consistent esti-
mates. In our case, there might be unobservable DSA-
specific variables which have an impact on the intent
of a DSA through some observable covariates. We
posit that KDRIi cannot be an endogenous variable as
the quality level of any donor’s kidney is most likely
independent of DSA-specific factors. However, the
two other variables, namely Wjkt and HHIjk, may be
influenced by unobserved factors that affect the intent
of a DSA. These unobserved factors can be financial,
managerial, and cultural DSA-specific factors which
can have an impact on the procurement decisions at a
DSA. For instance, financial burdens can make some
transplant centers (and OPOs) be more aggressive in
terms of patient selection and perform transplantation
for sicker patients. Being more aggressive in patient
selection may have direct consequences on the wait-
ing times of patients and the competitive environment
in a DSA. Hence, it is not unreasonable to suspect a
correlation between Wjkt and HHIjk and some
unobservedfactors thatarenotcapturedwithourdata.
To correct for endogeneity, we use a control func-

tion approach. The basic idea of this approach is to
construct variables (or, control functions) which
would account for the nonzero part of the expected
value of the error term conditional on the exogenous
variables. It is basically a two-step procedure which
utilizes a valid instrumental variable (IV) to control
for the part of the error term that correlates with an
endogenous variable. We extend the existing control
function method described in Rivers and Vuong
(1988) and Petrin and Train (2010) to a multivariate
context in order to test whether or not our model suf-
fers from endogeneity by exploiting the normally dis-
tributed errors in the probit estimation. We find
evidence of endogeneity in our specification. The
competition variable (HHIjk) is found to be endoge-
nous, whereas the waiting time until transplantation
variable (Wjkt) turns out to be exogenous. We proceed
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with the outline of the estimation procedure followed
by the results in section 5.3 provided in Table 2. The
details of the implementation of the endogeneity cor-
rection method (control function approach) including
the results of its two steps (i.e., instrument validity
and evidence of endogeneity) and the extension to a
multivariate context can be found in Appendix S4.
We refer the reader to Petrin and Train (2010) for
further details of the control function approach for
endogeneity in consumer choice models.

5.2.1. Endogeneity Correction Using the Control
Function Approach. The first step of the control
function approach is to regress endogenous variables
on exogenous instruments (Step 1). In the second step,
the residuals from these regressions enter into the
probit model as additional covariates (Step 2). By
using two separate IVs (one for Wjkt and one for
HHIjk), we isolate the part of Uij(Yi) that is not corre-
lated with ɛij.
Let dWjkt and dHHIjk denote our IVs for the waiting

time and competition variables respectively. These
IVs are created to reflect the median waiting times
and competition in comparable DSAs so that they
share similar characteristics of the observed endogen-
ous variables and at the same time they even off the
unobserved DSA-specific factors that might be the
reason for endogeneity in the model specification. In
this way, these IVs would be correlated with the origi-
nal (suspected) explanatory variables (i.e., Wjkt and
HHIjk) but not correlated with the error term. To cal-
culate these IVs, we group all 58 DSAs in the United
States into 8 clusters based on the average number of
transplantations per year and the number of

transplant centers. Hence, similar DSAs are placed in
the same group, which enables us to average out the
unobserved factors affecting the intent. Therefore, we
define our two IVs as follows:dWjkt : The average of the median waiting time at

DSAs similar in size to DSA j during the same
quarter t and for the same blood type k.

dHHIjk : The average HHI at DSAs similar in size
to DSA j for the same blood type k.

Note that in order not to bias our Hausman-type
instrument (Hausman 1996) calculations, we
excluded the DSAs in the same region.

5.3. Estimation Results
In this subsection we report the main results from the
endogeneity-corrected model, the details of which are
provided in Appendix S4.
The results of the Step 1 of the control function

approach is provided in Table 6 in Appendix S4.
Diagnostics in Step 1 show support for the validity of
the chosen instruments. Next, we test the evidence of
endogeneity in Step 2 of the control function
approach. The results provided in Table 7 in
Appendix S4 indicate that the competition variable is
endogenous and the waiting time until transplanta-
tion variable is exogenous. This implies that an OPO
intent model that doesn’t control for the endogeneity
of the competition variable leads to bias in the model
estimation. Hence, in the remainder of the study,
endogeneity correction refers to the treatment of the
endogenous competition variable and we assume that
the waiting time until transplantation variable is an

Table 2 Summary of Estimation Models (Intent Model with Whole Data, Bottom 15%, and Top 85% Quality Donors)

Dependent variable: Prob(Intent)

Variable (coefficient)

Whole data Bottom 15% Top 85%

Parameter
estimate†

Average marginal
effects‡

Parameter
estimate†

Average marginal
effects‡

Parameter
estimate†

Average marginal
effects‡

Constant (b0) 2.791*** 2.761*** 2.914***
(0.030) (0.100) (0.038)

KDRIi (bKDRI) �0.989*** �0.143*** �0.971*** �0.310*** �1.133*** �0.130***
(0.012) (0.002) (0.034) (0.010) (0.024) (0.003)

Wjkt (bW) 0.016* 0.003** 0.039** 0.014** 0.012 0.001
(0.008) (0.001) (0.016) (0.005) (0.009) (0.001)

HHIjk (bHHI) �0.101* 0.012 �0.160 0.037 0.044 0.005
(0.049) (0.006) (0.085) (0.027) (0.029) (0.003)

Log-likelihood �17,917.61 �5539.20 �13,946.01
Concordance 77.8% 67.5% 70.4%
Wald v2(3) 7,181.67*** 771.96*** 2300.20***
Observations 75,778 75,778 11,363 11,363 64,415 64,415

Notes. ***p < 0.001, **p < 0.01, *p < 0.05.
†Bootstrap standard errors for parameter estimates are in parenthesis.
‡Delta-method standard errors for average marginal effects are in parenthesis.
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exogenous variable. In the endogeneity-corrected
model, the utility function Uij(Yi) is given as follows:

UijðYiÞ ¼ b0xij þ �Cð Þfij þ ~eCij ; if Yi ¼ 1;

0; otherwise;

�
ð12Þ

where fij is the residual from Step 1 regression (us-
ing the IV dHHIjk ) that is entered as an additional
explanatory variable to the uncorrected utility model
Equation (11), the vector b and kC denote the param-
eters to be estimated, and ~eCij is the utility from attri-
butes unobservable to the researcher.

The results of this endogeneity-corrected model are
displayed in Table 2. As can be seen, the kidney qual-
ity index is significant at 0.1% level, and the median
waiting time until transplantation variable together
with the competition variable are significant at 5%
level for the whole data. The Wald v2 test statistics
yield a p-value less than 0.001 which indicates a sig-
nificant goodness of fit for the overall model, addi-
tionally the concordance of the model is 77.8%.13

Hence, we find evidence that as the organ quality
increases, the probability of recovering a kidney
increases because lower KDRI values are associated
with increased donor quality. Additionally, the
results indicate that as the median waiting time
increases, the probability of recovering a kidney from
a donor increases as well. Lastly, the results give sup-
port to the positive association between competition
and the probability of recovering a kidney (i.e., higher
HHI means less competition). We also report the aver-
age marginal effects in Table 2. For instance, consider-
ing the whole data, a one unit increase of KDRI leads
to an average decrease of 0.143 in the probability that
a kidney is procured; in addition, a one year increase
in the median waiting time leads to an average
increase of 0.003 in the probability that a kidney is
procured. The average marginal effect of the competi-
tion variable is insignificant.
Therefore, we find support for the hypotheses 1, 2,

and 3A. In other words, the results support the first
two hypotheses motivated by the game theoretical
model and also the hypothesis inspired by the litera-
ture which find that competition leads to procuring
higher levels of marginal organs (i.e., Halldorson
et al. 2013, Adler et al. 2014).14 Even though our
intent variable is defined for all kidneys with varying
qualities, our results indicate that transplant centers
operating in more competitive markets have an incen-
tive to procure lower quality kidneys. Also, note that,
as will be seen below, when the data are analyzed at
the lower or higher quality levels, the competition
variable is no longer significant.
A wide spectrum of quality exists among deceased

donor organs. We argue that the decisions for lower
quality organs may be different from the decisions

when all quality levels are considered. Hence, to test
this, we divide the data into two groups: (i) donors
whose kidney quality falls in the highest 85% quality
level based on KDRIs of all donors in that year, that
is, top 85% quality; and (ii) donors whose kidney
quality falls in the lowest 15% quality level based on
KDRIs of all donors in that year, that is, bottom 15%
quality.15 We calculate the 85th percentile of KDRI
values of all the donors for each year in our dataset.
Any donor whose KDRI value higher (lower) than
this threshold value is classified as a bottom (top) 15%
(85%) quality donor. Table 9 in Appendix S5 displays
the different KDRI threshold values for each year.
We again estimate the coefficients and average mar-

ginal effects using our endogeneity-corrected intent
model specification as described above and compare
the results of these mutually exclusive groups (bot-
tom 15% and top 85% quality organs; see the final
four columns of Table 2). Note that goodness of fit
statistics (log-likelihood, concordance, and Wald v2)
for these two models, which indicate acceptable fit,
are also available in Table 2. It is important to note
that the coefficient of the waiting time until transplan-
tation variable is significant for lower quality donors,
however the same coefficient is not significant for
high quality donors. Hence, the intent for low quality
organs is more sensitive to the changes in waiting
time than for high quality organs. Presumably, this
has motivated the new kidney allocation policy that
enables broader sharing of the lower quality organs.
The impact of this new kidney allocation policy is
studied in the next section (section 6). It is interesting
to note that even though the estimated coefficients
indicate the opposite (jb̂top 85%

KDRI j [ jb̂bottom 15%
KDRI j), the

average marginal effects show that the intent for low
quality organs is more sensitive to the changes in the
quality level of the organ: a one unit decrease in the
KDRI (increase in quality) leads to an average
increase of 31% in the probability of recovery for low
quality organs, whereas a one unit decrease in the
KDRI results in an average increase of 13% in the
probability of recovery for high quality organs.
We also report the marginal effects of covariates at

the mean values when the value of one covariate
changes by 50%. Based on the estimated coefficients
available in Table 2, for a typical lower quality donor
(bottom 15% quality) who has the average values of
all three variables (i.e., KDRIi = 2.27, Wjkt = 1.83, and
HHIjk = 0.39): (i) a 50% increase in the donor quality
(50% reduction in the KDRIi) would result in a 15.1%
increase in the probability of recovering his/her kid-
ney; and (ii) a 50% increase in the waiting time would
result in a 1.2% increase in the probability of recover-
ing his/her kidney. Similarly, for a typical higher
quality donor (top 85% quality) who has the average
values of all three variables (i.e., KDRIi = 1.17,
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Wjkt = 1.79, and HHIjk = 0.41): a 50% increase in the
donor quality (50% reduction in the KDRIi) would
result in a 4.2% increase in the probability of recover-
ing his/her kidney. Both the parameter estimate and
the average marginal effect of the waiting time for the
top 85% quality sample is insignificant, hence we do
not report its marginal effects. Overall, we conclude
that the intent for low quality organs is more sensitive
to the changes of organ quality than the intent for
higher quality organs since the marginal effect of
varying the kidney quality by 50% is 15.1% for bottom
15% quality sample and 4.2% for the top 85% quality
sample.

6. Counterfactual Analysis

The procurement rates of the deceased-donor kidneys
exhibit significant variation across different DSAs. This
is illustrated in Figure 7 for the NYRT OPO in New
York vs. UTOP OPO in Utah. In particular, UTOP OPO
procures better quality organs than NYRT OPO. To be
more specific, the lowest quality organ procured in
Utah has KDRI of 2.4; and the organs of lower quality
(i.e., higher KDRI) are not procured in Utah whereas
such organs are procured in New York, as shown in
Figure 7. Therefore, a natural conclusion is that if such
organs became available in New York, they could have
been procured, increasing the organ supply. Although
Figure 7 shows just one pair of OPOs, such disparities
are widespread and hence, the opportunity to better
utilize lower quality kidneys is likewise widespread in
the deceased-donor kidney allocation system. As a
matter of fact, as part of the new kidney allocation sys-
tem, which became effective in December 2014, lower
quality kidneys are shared more broadly. That is,
instead of following the current geographically-tiered
protocol of sharing (i.e., a kidney is first offered in its
DSA, then in its region, and then nationally), the new
policy allows those kidneys to be offered directly in

their regions followed by the entire country. One can
also consider offering the lower quality kidneys nation-
ally without offering them regionally first.
The specific change in the kidney allocation policy

is to share the bottom 15% quality of the organs more
broadly (i.e., regionally). This section focuses on the
impact of this policy change and quantifies its poten-
tial benefits. We also study the impact of sharing the
low quality organs nationally and increasing the low
quality threshold to 20% from 15%.
We have a total of 11,363 observations in the lowest

15% quality in our data set.16 We run the endogene-
ity-corrected probit regression described in section 5
with the same variables over the sample of the bottom
15% quality kidneys, separately for each blood type.

Hence, we obtain the estimated coefficients b̂bottom15%
0;k ,

b̂bottom15%
KDRI;k , b̂bottom15%

W ;k , and b̂bottom15%
HHI;k for each blood

type k. To estimate the additional number of kidneys
procured per year, in our regional sharing analysis,
we first substitute the largest median waiting time in

donor i’s region r for blood type k in quarter t (WMax
rkt )

as the median waiting time of the donor i. Then, for
each donor i and blood type k, we calculate the esti-
mated probability of procurement using the following
probit model:

Ŷ
Reg
i;k ¼ Uðb̂bottom15%

0;k þ b̂bottom15%
KDRI;k � KDRIi þ b̂bottom15%

W ;k

�WMax
rkt þ b̂bottom15%

HHI;k �HHIjkÞ:
ð13Þ

Therefore, we find the total additional number of
kidneys procured per year with regional sharing as
follows:

X
k2fA;B;O;ABg

 
2 �Pnk

i¼1

Ŷ
Reg
i;k � APk

42
� 4

!
; ð14Þ

where APk is the actual number of blood type k kid-
neys procured among low quality donors (bottom
15%) during the period of our study, nk is the num-
ber of low quality donors for blood type k. Note that
we multiply

Pnk
i¼1 Ŷ

Reg
i;k by two since our unit of anal-

ysis is a kidney and whenever there is a procure-
ment, two kidneys are procured; in addition, we
have 42 quarters during the period of our study.
The additional number of kidneys procured per year
for each blood type under regional sharing is
reported in the third column of Table 3.
We also conduct an analogous study under national

sharing. As indicated above, national sharing is not
considered in the new kidney allocation system.
However, this counterfactual analysis calculates the
expected number of additional kidneys which may
arise due to a national sharing policy and compares
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its impact to that of the current regional sharing pol-
icy. To estimate the additional number of kidneys
procured per year, in our national sharing analysis,
we first substitute the largest median waiting time (in
the whole nation) for blood type k in quarter t (WMax

kt )
as the median waiting time of the donor i. Then, simi-
lar to the regional sharing estimation above, we calcu-
late the estimated probability of procurement ŶNat

i;k for
each donor iwith blood type k using the probit model.
Therefore, the additional number of kidneys procured
per year with national sharing is

X
k2fA;B;O;ABg

 
2 �Pnk

i¼1

ŶNat
i;k � APk

42
� 4

!
: ð15Þ

The additional number of kidneys procured per year
for each blood type under national sharing is
reported in the last column of Table 3. We also repeat
this analysis using more recent 5 years data for which
we run the endogeneity-corrected regressions over
the period between 2006 and 2010. The last five rows
of Table 3 show the results when the last five years is
considered in the estimations. Note that in addition
to the point estimates, we report the 95% confidence
intervals.17 The additional number of kidneys pro-
cured vary by the blood type – highest for blood
types O and A. In addition, the gain from this policy
change is more conspicuous in more recent years.
Moreover, the national sharing leads to significantly

higher gains over regional sharing although both lead
to significant increases in the supply of deceased-
donor organs.
The rest of this section quantifies the impact of

adjusting the quality threshold from the lowest
15% (see Table 3) to the lowest 20% (see Table 4).
We repeat the analysis of the bottom 15% quality
kidneys, using expanded data including all the
donors with the lowest 20% quality kidneys.
Increasing the quality threshold increases the addi-
tional number of kidneys procured for all blood
types: the total number of kidneys increases from
58 to 79 under regional sharing and from 129 to
174 under national sharing (these numbers apply
to the most recent five years in the sample, 2006–
2010). Similar to the results in Table 3, as seen in
Table 4, national sharing results in a greater
increase of procured kidneys than regional shar-
ing, although the increase of 95 kidneys per year
(79 to 174) under 20% is larger than the increase
of 71 kidneys (58 to 129) under 15%. The effect of
blood type under the policy change is different,
which might suggest a more tailored policy change
could enhance the total increase. Blood types A
and B enjoy a greater increase of procured kidneys
when moving from 15% to 20% than type O.
Hence, a possible policy adjustment could be that
the lowest 20% quality of blood types A and B
kidneys be shared more broadly while retaining
15% for blood type O.
We list the percentage supply increases in

Table 5. We include the percentage of all procured
kidneys and the percentage of the lowest 15%
quality (in the time period 2006–2010). While these
percentage increases may appear to be modest,
they provide a perspective on how the supply
(both total and lower quality sources) are affected
by the policy changes. We can see that the broader
sharing of the lowest 15% quality kidneys nation-
ally increases the supply of all procured kidneys
by 0.9% (1.2% for lowest 20% quality kidneys).

Table 3 Number of Additional Kidneys Procured Per Year for the
Bottom 15% Threshold under Regional and National Sharing

Regional sharing National sharing
Number of

additional kidneys
procured per year

[95% confidence Interval]

Number of additional
kidneys procured
per year [95%

confidence Interval]

2000–2010 A 7.70 19.07
[7.14; 7.79] [18.73; 19.36]

AB * *
B 3.24 6.72

[3.10; 3.45] [6.50; 6.85]
O 28.70 63.07

[28.63; 29.38] [62.47; 63.47]
Total 39.64 88.86

[39.24; 40.25] [88.32; 89.32]

2006–2010 A 23.16 57.82
[22.56; 23.60] [56.82; 57.81]

AB * *
B 5.07 11.56

[3.10; 3.45] [11.08; 11.65]
O 29.38 59.51

[28.84; 30.10] [58.38, 59.58]
Total 57.60 128.89

[56.66; 58.43] [126.85; 128.47]

Notes. *Insufficient sample size for blood type AB to obtain reasonable
estimates.

Table 4 Number of Additional Kidneys Procured Per Year for the
Bottom 20% Threshold under Regional and National Sharing

Regional sharing National sharing
Number of additional
kidneys procured
per year [95%

confidence interval]

Number of additional
kidneys procured
per year [95%

confidence interval]

2006–2010 A 42.14 95.86
[41.00; 41.16] [95.68; 96.72]

B 6.09 16.76
[5.86; 6.51] [16.56; 17.20]

O 30.84 61.73
[29.93; 31.31] [60.25, 61.86]

Total 79.07 174.35
[77.41; 79.35] [173.08; 174.89]
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This represents an increase of 7.3% of these lowest
quality kidneys (9.9% for the lowest 20% quality
kidneys).
To put the increase of 129 procured kidneys per

year (under national sharing of the lowest 15% qual-
ity) in perspective, there are 14 of the 58 DSAs in the
United States in 2009 with 129 or fewer kidneys avail-
able. Therefore, this expected increase of 129 reflects
the addition of a small- to medium-sized DSA to the
UNOS network.

7. Concluding Remarks

We study how the deceased-donor kidney supply can
be enhanced through geographic sharing in the Uni-
ted States. In particular, we examine how demand
side pressure affects the supply of deceased-donor
organs for transplant. We formulate and test hypothe-
ses to glean the impact of organ quality, waiting time,
and competition on organ procurement decisions,
that is, the intent. Most importantly, we find that
broader sharing of low quality kidneys can lead to a
significant increase in the organ supply. To be more
specific, both higher organ quality and longer waiting
times in a DSA generate greater OPO intent. These
characteristics differ markedly across the country.
These disparities endow the system with an opportu-
nity to procure more organs if some organs are shared
more broadly immediately. Following such a policy
nationally (i.e., sharing lowest 15% quality kidneys
nationally) is expected to yield 129 additional kidney
transplants per year, a number expected to increase as
the difference between supply and demand for
organs grows. This number reflects an increase of
around 1% of all procured kidneys per year on aver-
age between 2006 and 2010, and 7.3% of the bottom
15% quality kidneys procured annually on average
between 2006 and 2010. Moreover, there are 14 of the
58 DSAs in the United States in 2009 with 129 or fewer
kidneys available. Therefore, this expected increase of

129 kidneys reflects the addition of a small- to med-
ium-sized DSA.
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Notes

1See http://optn.transplant.hrsa.gov/data, accessed on
August 10, 2017.
2During 2006–2011, more than 4500 patients died each
year while waiting for a kidney.
3In the remainder of the study, we will refer to the unique
geographic area that the OPO serves as the DSA. Also,
note that there is one-to-one relationship between an OPO
and its DSA.
4Department of Health and Human Services (Ruling No:
CMS-1543-R, December 21, 2006). Available at http:
//www.cms.gov/Regulations-and-Guidance/Guidance/
Rulings/Downloads/CMS1543R.pdf, accessed on August
10, 2017.
5We extend the control function approach advocated by
Petrin and Train (2010) to a multi-variate context to cor-
rect for endogeneity. This technique is described in detail
in Appendix S4.
6https://optn.transplant.hrsa.gov/news/revised-national-
kidney-transplant-allocation-system-is-now-in-place, accessed
on August 10, 2017.
7These kidneys are from donors older than sixty, or
between the ages of 50–59 with at least two of the follow-
ing comorbidities: hypertension history, serum creatinine
>1.5 mg/dl, or cause of death from cerebrovascular acci-
dent.
8Our analysis only uses the weaker condition that
�L [ 1=cðsÞ where s is the longest waiting time to get a
transplant in equilibrium.
9Given a general function f(�) as a patient’s strategy, it can
be replaced by the largest nondecreasing function f̂ such
that f̂ � f without changing the outcomes because organs
are allocated on a FCFS basis and the system is over-
loaded. Recall that patients are assumed homogeneous,
and they are differentiated only through their waiting
time. Consider the scenario where all patients have a
strictly decreasing l(t). Now consider two patients
who have waited t1 and t2 where t1 > t2. Consequently,
l(t1) < l(t2). The implication is that patient 1 would accept
all the kidneys patient 2 would accept (that is, those with
quality l such that l(t2) < l) as well as some kidneys
patient 2 would not accept (those kidneys with quality l
such that l(t1) < l < l(t2)), since patient 1’s threshold is
lower than that of patient 2. Thus, there will never be kid-
neys of a quality acceptable to patient 2 which will be

Table 5 Total Number of Additional Kidneys Procured under Regional
and National Sharing with Respect to Annual Average
Volumes (2006–2010 Data)

Increase with respect
to total number of
kidneys procured

per year on average
between 2006 and
2010 (N = 15,030)

Increase with respect
to bottom 15% quality

kidneys procured per year
on average between 2006

and 2010 (N = 1764)

Bottom 15%
regional sharing

58/15,030 = 0.4% 58/1764 = 3.3%

Bottom 15%
national sharing

129/15,030 = 0.9% 129/1764 = 7.3%

Bottom 20%
regional sharing

79/15,030 = 0.5% 79/1764 = 4.5%

Bottom 20%
national sharing

174/15,030 = 1.2% 174/1764 = 9.9%
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offered to patient 2 since they will be already accepted by
patient 1 beforehand, in this over-loaded queue setting
where demand outstrips supply. Consequently, without
loss of generality, we can replace the decreasing l(t) func-
tion with a nondecreasing function without affecting the
acceptance behavior of patients.
10If lðsÞ\ �L, then a patient who waited for s time units
can deviate and wait for e > 0 time units more (resulting
in a total wait of s + e) and can receive an organ which
offers �L life years. This results in a strict improvement in
the patient’s utility provided e > 0 is sufficiently small,
but contradicts that s is the longest wait in the system.
Therefore, lðsÞ ¼ �L.
11Only 0.3% of the observations have the disposition code 3.
12The generalized bivariate Probit model only assumes
that ɛij follows a normal distribution, however without
loss of generality we can assume standard normal distri-
bution in our specification.
13Concordance (sometimes called the C-statistic or C-
index) is a measure of goodness of fit for a binary out-
comes model. It is also equal to the area under the
receiver operating characteristic (ROC) curve. We report
the in-sample concordance. According to Hosmer and
Lemeshow (2000), as a general rule, concordance
between 70% and 80% is considered acceptable.
14In addition, we divide the data into different groups by
blood type and estimate the coefficients in the endogene-
ity-corrected model. The results of these estimation mod-
els are available in Appendix S5.
15The analysis of the Kidney Transplantation Committee
shows that graft survival rate degrades significantly faster
after this cut-off, and hence, 85% is a natural choice;
see the figure on slide 16 of the Proposal to Substantially
Revise the National Kidney Allocation System Document,
available at http://www.transplantpro.org/wp- content/
uploads/sites/3/Board_06-2013_Kidney_Committee_Actions1.
pdf, accessed on August 10, 2017.
16Whenever a donor has a KDRI value higher than the
85th percentile of KDRI values of all donors in
the observed year (displayed in Appendix S5, Table E9),
the organ recovered from this donor belongs to the bottom
15% quality.
17Confidence intervals are displayed in brackets. These
intervals are obtained through a bootstrap approach. In
order to obtain the standard errors for the mean value of
the total estimated number of kidneys procured, we draw a
random sample of size equal to the number of observations
for each blood type with replacement (i.e., full sample)
where each observation i is sampled subjected to an inde-
pendent Bernoulli trial with parameter Ŷi (estimated
probability of procurement). Then, the confidence intervals
are calculated by finding the mean (l̂) of the samples and
standard errors of the means (cSE) for 1000 bootstrap repli-
cations for each blood type (separately for regional and
national sharing). We obtain repeated samples to calculate
the upper (l̂ þ 1:96 � cSE) and lower (l̂ � 1:96 � cSE) end
points of the 95% confidence intervals. The values above the
confidence intervals (i.e., point estimates) in Table 3 are cal-
culated directly from the estimated coefficients, so they are
not the midpoints of the simulated confidence intervals.
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