
Appendices for “Enhancing Kidney Supply Through Geographic
Sharing in the United States”

Appendix A: Proofs

Proof of Proposition 1. It follows from (2)-(3) that

Q(t) = exp

{
−
∫ t

0
γ(s)ds

}[
λ−

∫ t

0
exp

{∫ s

0
γ(u)du

}
G′(l(s)) l′(s)ds

]
, t < τ. (16)

Then combining (4) and (16), we see that τ must satisfy

exp

{∫ τ

0
γ(s)ds

}
∆G(L̄) +

∫ τ

0
exp

{∫ s

0
γ(u)du

}
G′(l(s)) l′(s)ds = λ. (17)

At equilibrium a patient who has waited for t time units must be indifferent between accepting
an organ of life years l(t) and waiting. That is, we must have

l(t) = Wt + Lt for t < τ, l(t) > L, (18)

where Wt denotes the expected residual waiting time conditional on having waited for t time units,
and Lt denotes the expected post-transplant life expectancy associated with waiting (not including
the waiting time on the transplant list) of a patient who has waited for t time units.

The following figure shows the various events (and their rates) that can happen to patients who
have waited for t time units:

Figure 1: The portion of the transplant waiting list consisting of patients who have waited for t time
units or more. Viewing this as a system, patients enter at the rate of Q(t), and can leave the system at
time s ∈ [t, τ) with rate G′(l(s)) l′(s) and at time τ with rate ∆G(L̄) by receiving a transplant. Patients
can also leave the system by dying at rate γQ(s) (at time s).

Given the system portrayed in Figure 1, we write by Little’s Law that

Wt =

∫ τ
t Q(s)ds

Q(t)
. (19)

To compute Lt, consider what happens to the intensity of fluid Q(t) (of those who have been waiting
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for t time units) as shown in Figure 1, and interpret the fraction served at various times as the
probability density (or mass at time τ) of getting transplanted after waiting for s ≥ t time units,
denoted by φ(s). Note that

φ(s) =
G′(l(s)) l′(s)

Q(t)
for t ≤ s < τ and φ(τ) =

∆G(L̄)

Q(t)
. (20)

Then, we write

Lt =

∫ τ

t
φ(s)l(s)ds+ φ(τ)L̄. (21)

Substituting (20) into (21) yields

Lt =

∫ τ

t
l(s)

G′(l(s)) l′(s)

Q(t)
ds+

∆G(L̄)

Q(t)
L̄.

Equivalently,

Lt =
1

Q(t)

∫ L̄

l(t)
udG(u). (22)

Substituting (19) and (22) into (18) gives∫ τ

t
Q(s)ds+

∫ L̄

l(t)
udG(u) = Q(t)l(t) for t < τ, l(t) > L. (23)

In what follows, we will first ignore the restriction l(t) > L in (23) and solve for f(·) that solves
(23). Then, we will observe that f(·) is strictly increasing. Therefore, truncating f(·) at L from
below yields l(·). To this end, consider the equation∫ τ

t
Q(s)ds+

∫ L̄

f(t)
udG(u) = Q(t)f(t) for t < τ.

Differentiating both sides with respect to t and substituting for Q′(t) (cf. Equation (3)) gives

− 1 = −γ(t)f(t) + f ′(t) for t < τ. (24)

Also, using the boundary condition that f(τ) = l(τ) = L̄ gives

f(t) = exp

{∫ t

0
γ(s)ds

}[
L̄ exp

{
−
∫ τ

0
γ(s)ds

}
+

∫ τ

t
exp

{
−
∫ s

0
γ(u)du

}
ds

]
, for 0 < t < τ.

(25)
Then, the patients’ strategy is really the truncated function:

l(t) = max{L, f(t)} (26)

which proves (5). Also note that (16) proves (4). To prove (6), we first consider how f(t) and f ′(t)
change with τ . Note that

∂f(t)

∂τ
= −(L̄γ(τ)− 1) exp

{
−
∫ τ

t
γ(s)ds

}
< 0, t < τ, (27)
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which incidentally proves the last assertion of the proposition. Also note from (24) that

∂f ′(t)

∂τ
= γ(t)

∂f(t)

∂τ
< 0. (28)

To establish the uniqueness of τ satisfying (6), consider (17) and define H(τ) as its left-hand side,
i.e.,

H(τ) = exp

{∫ τ

0
γ(s)ds

}
∆G(L̄) +

∫ τ

0
exp

{∫ s

0
γ(u)du

}
G′(l(s)) l′(s)ds. (29)

Differentiating this, substituting l′(τ) = L̄γ(τ)− 1 from (24), and rearranging terms gives

H ′(τ) = exp
{∫ τ

0 γ(s)ds
} [
γ(τ)∆G(L̄) +G′(L̄)(L̄γ(τ)− 1)

]
+
∫ τ

0 exp
{∫ s

0 γ(u)du
}

∂
∂τ

[
d
dsG(l(s))

]
ds. (30)

Changing the order of differentiation for the integrand of the last term on the right-hand side yields

H ′(τ) = exp
{∫ τ

0 γ(s)ds
} [
γ(τ)∆G(L̄) +G′(L̄)(L̄γ(τ)− 1)

]
+
∫ τ

0 exp
{∫ s

0 γ(u)du
}

d
ds

[
∂
∂τG(l(s))

]
ds. (31)

Note that
∂

∂τ
G(l(s)) = G′(l(s))

∂l(s)

∂τ
.

Then, note from (27) that

∂

∂τ
G(l(s)) = −G′(l(s))(L̄γ(τ)− 1) exp

{
−
∫ τ

s
γ(u)du

}
.

Thus, we conclude that

H ′(τ) = exp
{∫ τ

0 γ(s)ds
} [
γ(τ)∆G(L̄) +G′(L̄)(L̄γ(τ)− 1)

]
−
∫ τ

0 exp
{∫ s

0 γ(u)du
}

d
ds

[
G′(l(s))(L̄γ(τ)− 1) exp

{
−
∫ τ
s γ(u)du

}]
ds. (32)

Integrating the last term on the right-hand side by parts gives

H ′(τ) = exp

{∫ τ

0
γ(s)ds

}[
γ(τ)∆G(L̄) +G′(L̄)(L̄γ(τ)− 1)

]
− exp

{∫ s

0
γ(u)du

}
G′(l(s))(L̄γ(τ)− 1) exp

{
−
∫ τ

s
γ(u)du

}
|τ

0

+

∫ τ

0
γ(s) exp

{∫ τ

0
γ(u)du

}
G′(l(s))(L̄γ(τ)− 1) exp

{
−
∫ τ

s
γ(u)du

}
ds

= exp

{∫ τ

0
γ(s)ds

}[
γ(τ)∆G(L̄) +G′(L̄)(L̄γ(τ)− 1)

]
− exp

{∫ τ

0
γ(u)du

}
G′(l(τ))(L̄γ(τ)− 1)

+G′(l(0))(L̄γ(τ)− 1) exp

{
−
∫ τ

0
γ(u)du

}
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+

∫ τ

0
γ(s) exp

{∫ s

0
γ(u)du

}
G′(l(s))(L̄γ(τ)− 1) exp

{
−
∫ τ

s
γ(u)du

}
ds

> exp

{∫ τ

0
γ(s)ds

}[
γ(τ)∆G(L̄) +G′(L̄)(L̄γ(τ)− 1)−G′(L̄)(L̄γ(τ)− 1)

]
= exp

{∫ τ

0
γ(s)ds

}
γ(τ)∆G(L̄) > 0.

Therefore, H(·) is strictly increasing. Also note that H(0) = ∆G(L̄) and limτ→∞H(τ) =∞.
Thus, for every λ > ∆G(L̄), there exists a unique τ such that (6) holds. It is also immediate

from the monotonicity of H(·) that as λ increases, so does τ , which concludes the proof. �

Proof of Corollary 1. (8) follows from (5) by direct substitution of γ(t) = γ for all t. Note also
that equation (17) in the Proof of Proposition 1, which pins down τ , becomes

eγτ∆G(L̄) +

∫ τ

0
eγsG′(l(s))l′(s)ds = λ. (33)

Then substituting (8) into (33) and making the change of variable u = l(s) gives

eγτ
∫ L̄

l(0)

(
u− 1

γ

)
dG(u) = λ

(
L̄− 1

γ

)
.

Similarly, substituting γ(t) = γ for all t in (16) gives

Q(t) = eγt
[
λ−

∫ t

0
eγsG′(l(s))l′(s)ds

]
, t < τ. (34)

Then substituting (8) into (34) and making the change of variable u = l(s) gives (10), concluding
the proof.

Appendix B: Details of the Calculation of Variables

Waiting Time to Transplantation in a DSA. Although the donor and recipient data sets do
not directly include this kind of information, we calculate this variable by using three variables in
the recipient data: init date, end date, and trr id code. The first two variables represent the date
on which the patient is added to the waiting list and on which the patient is removed from the
waiting list, respectively. The third variable is the transplant identifier which is only non-missing
if a transplantation has occurred.

The end date variable can represent the transplantation date or the date a patient is removed
from the waiting list due to other reasons (e.g., death). By using the trr id code, we can identify
all patients who had a transplantation in our data. Hence, we first group the data by each DSA
during each quarter by blood type. Then, we calculate the waiting time of each patient who had a
transplantation in the recipient data by finding the time difference between his/her end date and
init date if this patient was added to the waiting list prior to the beginning of or within the observed
quarter and was removed from the list before the last day of the quarter. Finally, the median value
(in terms of years) of this variable is calculated for all observations grouped by DSA, blood type,
and quarter.
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Kidney Donor Risk Index. This index combines a variety of donor factors into a single
continuous scale that captures the risk of graft failure after kidney transplantation. There are 10
factors considered in calculating the KDRI. These factors are donor age, height, weight, ethnicity,
history of hypertension, diabetes status, serum creatinine level, cause of death, Hepatitis C Virus
status, and DCD (donation after circulatory death) status. Note that the lower the KDRI of
a donor, the higher is the donor kidney quality. This index was first developed by Rao et al.
(2009) by estimating the association between these 10 donor factors and graft survival by using
multivariable Cox proportional hazards regression model. The donor characteristics and their
estimated coefficients are provided in Table 3 in Appendix E. There is another index called Kidney
Donor Profile Index (KDPI) which is a mapping of the KDRI based on the profiles of all deceased
donors in the U.S. from whom a kidney was recovered during the prior calendar year. In this study,
instead of using this type of mapping we calculate the KDRI value for each donor in our data set
and use this variable in the regressions as a proxy for donor kidney quality.

Herfindahl-Hirschman Index. From our recipient data set, we first calculate the total
cumulative number of registered patients during our period of study (January 1, 2000 through
June 30, 2010) at each transplant center by using the variable init date which indicates the date
when a patient is added to the waiting list. Next, we calculate the total cumulative number of
registered patients at an OPO by adding the total cumulative number of registered patients at all
transplant centers that belong to the observed OPO. Note that we use an HHI for each OPO for
each blood type separately. Let λck represent the total number of patients registered at transplant
center c by blood type k, then the total number of registered patients at each DSA j for each
blood type k equals

∑
c∈Ωj

λck where Ωj represents the set of transplant centers in each DSA j.

The market share of each transplant center c by blood type k then equals to sck =
λck∑
c∈Ωj

λck
for

transplant center c in DSA j. The Herfindahl-Hirschman Index is calculated as
∑

c∈Ωj
s2
ck.

Appendix C: An Additional Figure

Figure 2 indicates that the avarage HHI of all OPOs by year doesn’t change significantly over
time, but there is heterogeneity across different blood types; i.e., the market seems to be more
competitive for blood types A and O; and slightly less competitive for blood types B and AB.

Figure 2: Average HHI of all OPOs by blood types B and O over time.
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Appendix D: Endogeneity Correction Method

Two-stage least squares (2SLS) is the common method for testing and eliminating endogeneity
in linear models. However, it cannot be easily extended to non-linear models like ours. The
control function approach (Rivers and Vuong (1988), Petrin and Train (2010)) is better suited to
nonlinear models with continuous variables. The control function approach can be thought of as a
two-step procedure to deal with the issue of endogeneity in econometric models. To illustrate the
intuition behind this approach, consider a valid instrumental variable (IV), z, and assume only one
endogenous variable, x in the model specification. This instrumental variable has to be correlated
with the endogenous variable while it should not be correlated with the error term. The control
function simply correspond to the estimated residuals of the regression of x on z. Then, since the
instrumental variable is not correlated with the original error term, the control function captures
the part of x which is correlated with the error in the original model and therefore serves as a
control for it.

For the first step, we assume the following functional forms:

Wjkt = ω′qij + ηij , (35)

HHIjk = ψ′qij + ζij , (36)

where qij =
(
KDRIi, Ŵjkt, ĤHIjk

)
. The vectors ω and ψ denote the corresponding parameters

to be estimated; and ηij and ζij are the error terms.
The control function approach further assumes that εij , ηij , and ζij are one-on-one independent

of KDRIi, Ŵjkt, and ĤHIjk where εij is the error term in (11). However, εij and ηij (also, εij
and ζij) are allowed to be correlated. Consider now the distribution of εij conditional on ηij . We
can decompose εij into its mean, conditional on ηij as follows:

εij = E[εij |ηij ] + ε̃Wij , (37)

where ε̃Wij is the error term and by construction E[ε̃Wij |ηij ] = E[ε̃Wij ηij ] = 0. The conditional
expectation in (37) is called the control function used for the variable Wjkt for which we as-
sume a linear functional form. Hence, the control function is a function of ηij and is denoted
by CF1(ηij ;λW ) = λW ηij where λW is a coefficient term to be estimated.1

Consider now the distribution of εij conditional on ζij . Similarly, we can decompose εij into its
mean, conditional on ζij as follows:

εij = E[εij |ζij ] + ε̃Cij , (38)

where ε̃Cij is the error term and by construction E[ε̃Cij |ζij ] = E[ε̃Cijζij ] = 0. The control function (i.e.,
the conditional expectation in (38)) is a function of ζij and is denoted by CF2(ζij ;λC) = λCζij
where λC is a coefficient term to be estimated.2 Therefore, since εij = CF1(ηij ;λW ) + ε̃Wij =

1Assuming εij and ηij are jointly normal with zero mean, by the properties of the multivariate distribution,

ε̃Wij = εij − λW ηij is also normally distributed. Note that E[εij |ηij = n] =
(

Cov(εij ,ηij)

Var(ηij)

)
× n, and hence λW reflects

a covariance term.
2Assuming εij and ζij are jointly normal with zero mean, by the properties of the multivariate normal distribution,

ε̃Cij = εij − λCζij is also normally distributed.
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CF2(ζij ;λC) + ε̃Cij ,

εij =

(
λW
2

)
ηij +

(
λC
2

)
ζij +

(
ε̃Wij + ε̃Cij

2

)
.

Then, the utility function Uij(Yi) becomes

Uij(Yi) =

 β′xij +
(
λW ηij+λCζij

2

)
+

(
ε̃Wij +ε̃Cij

2

)
, if Yi = 1;

0, otherwise.
(39)

This is an independent probit model with variables KDRIi, Wjkt, HHIjk, ηij , ζij , and the final
term i.i.d. with zero mean.3 As we assume εij has a normal distribution, we implement the two-
step approach developed by Rivers and Vuong (1988)4: (i) perform two OLS regressions: Wjkt on

KDRIi, Ŵjkt, and ĤHIjk; and HHIjk on KDRIi, Ŵjkt, and ĤHIjk to obtain residuals η̂ij and ζ̂ij
respectively; and (ii) perform probit regression of the intent probability on KDRIi, Wjkt, HHIjk,

η̂ij and ζ̂ij . The results of the Step 1 regressions are in Table 1.

Dep. Var.: Wjkt Dep. Var.: HHIjk

Variable (Coefficient) Coefficient Variable (Coefficient) Coefficient
Estimate Estimate

Constant (ω0) 1.266* (0.019) Constant (ψ0) 0.168* (0.005)
KDRIi (ω1) 0.031* (0.007) KDRIi (ψ1) 0.008* (0.002)

Ŵjkt (ω2) 0.383* (0.007) Ŵjkt (ψ2) -0.039* (0.002)

ĤHIjk (ω3) -0.520* (0.020) ĤHIjk (ψ3) 0.737* (0.005)

F (3, 75742) = 1874.74, R2 = 0.07 F (3, 76170) = 9664.48, R2 = 0.28
Note: Standard errors are in parenthesis. (*p < 0.0001)

Table 1: Control Function Approach Step 1 Results

Step 1 diagnostics such as the F-test and partial R2 provide a sense of how well IVs perform
in our model setting. As can be seen in Table 1, both regression models passed the F-test (i.e.,
Prob > F = 0.000) and 1− Partial R2 values (0.98 and 0.99 for the waiting time and the competition
IVs respectively) show high explanatory power.5 Additionally, there is reasonably high correlation
(i.e., 0.25) between the first endogenous variable (Wjkt) and its IV; and there is high correlation
(i.e., 0.52) between the second endogenous variable (HHIjk) and its corresponding IV.

We test the evidence of endogeneity in Step 2 of the control function approach in Table 2. As
can be seen in Table 2, the coefficient for ζ̂ij is significant implying that the competition variable

3Note that Var(εij) > Var

(
ε̃Wij +ε̃Cij

2

)
; hence, the coefficient estimates need to be normalized. In addition, the

probit standard errors and test statistics based on the utility function (39) will not be accurate because this regression
will include the residuals from regressions based on functional forms (35) and (36). Therefore, we use bootstrapping
for estimating the true standard errors.

4Rivers and Vuong (1988) used only one IV in their approach, whereas in our approach we used two IVs and by
the properties of the normal distribution we can separate out the part in the error term that correlates with the
endogenous variables.

5We calculate the partial R2 (or the coefficient of partial determination) of the variables different form the IVs,
which indicates the percentage of variation that is not explained by the IV and is explained by the remaining
parameters. Assuming the reduced model includes only the IV and the full model includes all three variables, the
partial R2 = SSE(reduced)−SSE(full)

SSE(reduced)
. 1− Partial R2 provides a sense of the explanatory power of the IV.
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is endogenous. However, the coefficient for η̂ij is not significant (i.e., Prob > t = 0.419) and hence
we conclude that the waiting time until transplantation variable is exogenous. Note that the Wald
test of combined exogeneity (Wooldridge (2002), pp. 472-477) for the competition and waiting
time variables is rejected, so we have additional evidence of endogeneity in our specification. Note
that we also conduct the Wald test of exogeneity only for the competition variable and again find
evidence of endogeneity of the competition variable.

Dep. Var.: Prob(Intent)

Variable Coefficient Estimate p-value

Constant 2.851 (0.089) 0.000
KDRIi -0.988 (0.012) 0.000
Wjkt -0.011 (0.038) 0.773
HHIjk -0.130 (0.068) 0.056
η̂ij 0.031 (0.038) 0.419

ζ̂ij 0.215 (0.075) 0.004

Wald test of exogeneity: χ2(2) = 10.19 (Prob > χ2 = 0.006)
Note: Bootstrap standard errors are in parenthesis.

Table 2: Control Function Approach Step 2 Results

Appendix E: Additional Tables

KDRI Coefficient KDRI “XBeta”
Donor Characteristic Applies to: (“Beta”) Component

Age (integer years)
All Donors 0.0128 0.0128*(age-40)

Donors with age < 18 -0.0194 -0.0194*(age-18)
Donors with age > 50 0.0107 0.0107*(age-50)

Height (cm) All donors -0.0464 -0.0464*(hgt-170)/10

Weight (kg) All donors w/ weight < 80 kg -0.0199 -0.0199*(wgt-80)/5

Ethnicity African American donors 0.1790 0.1790

History of Hypertension Hypertensive donors 0.1260 0.1260

History of Diabetes Diabetic donors 0.1300 0.1300

Cause of Death Donors w/ COD=CVA 0.0881 0.0881

Serum Creatinine
All donors 0.2200 0.2200*(creat-1)

Donors with creat > 1.5 mg/dL -0.2090 -0.2090*(creat-1.5)

HCV status HCV positive donors 0.2400 0.2400

DCD status DCD donors 0.1330 0.1330

Table 3: KDRI Donor Factors Estimated Coefficients

Year 2000 2001 2002 2003 2004 2005

85 Percentile KDRI 1.725 1.735 1.747 1.798 1.828 1.901

Year 2006 2007 2008 2009 2010

85 Percentile KDRI 1.886 1.903 1.88 1.888 1.851

Table 4: 85th Percentile of KDRI Variable by each Year
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Dep. Var.: Prob(Intent)
Whole Data

Parameter
Variable Estimate
(Coefficient) (Blood Type=A) (Blood Type=O) (Blood Type=AB) (Blood Type=B)

Constant 2.824*** 2.750*** 3.038*** 2.733***
(β0) (0.067) (0.056) (0.253) (0.086)
KDRIi -1.005*** -0.988*** -1.002*** -0.942***
(βKDRI) (0.024) (0.021) (0.101) (0.037)
Wjkt 0.016 0.025* 0.017 0.019
(βW ) (0.018) (0.012) (0.070) (0.018)
HHIjk -0.082 -0.102 -0.350 -0.061
(βHHI) (0.083) (0.071) (0.412) (0.135)

Num. of Obs. 28,925 36,417 1,514 8,620

Dep. Var.: Prob(Intent)
Bottom 15% Quality Donors

Parameter
Variable Estimate
(Coefficient) (Blood Type=A) (Blood Type=O) (Blood Type=AB) (Blood Type=B)

Constant 2.634*** 2.602*** 3.436*** 2.626***
(β0) (0.142) (0.117) (0.753) (0.231)
KDRIi -0.943*** -0.980*** -1.237*** -0.896***
(βKDRI) (0.055) (0.045) (0.316) (0.089)
Wjkt 0.043 0.071*** 0.019 0.032
(βW ) (0.028) (0.020) (0.105) (0.031)
HHIjk -0.015 -0.081 -0.014 -0.076
(βHHI) (0.078) (0.067) (0.365) (0.145)

Num. of Obs. 4,042 5,577 231 1,372

Dep. Var.: Prob(Intent)
Top 85% Quality Donors

Parameter
Variable Estimate
(Coefficient) (Blood Type=A) (Blood Type=O) (Blood Type=AB) (Blood Type=B)

Constant 2.954*** 2.957*** 2.937*** 2.881***
(β0) (0.080) (0.066) (0.377) (0.126)
KDRIi -1.111*** -1.147*** -0.969*** -1.082***
(βKDRI) (0.033) (0.037) (0.181) (0.073)
Wjkt 0.009 0.012 0.026 0.015
(βW ) (0.020) (0.013) (0.075) (0.019)
HHIjk -0.060 -0.073 -0.250 -0.019
(βHHI) (0.110) (0.076) (0.443) (0.210)

Num. of Obs. 25,316 31,319 1,475 7,532

Note: Bootstrap standard errors are in parenthesis.
*** p < 0.001, ** p < 0.01, * p < 0.05, + p < 0.10.

Table 5: Summary of Estimation Models by Blood Type from Whole Data, Bottom 15%, and Top
85% Quality Donors (Endogeneity-corrected Intent Model)
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