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Abstract. For serial multiechelon systems subject to production capacity limits at every
stage, we consider a class of modified echelon base stock (MEBS) policies. To evaluate
information requirements of such systems, we consider two separate inventory manage-
ment mechanisms operated in a decentralizedmanner. For ordering decisions, these mech-
anisms utilize local knowledge only and are distinguished by the timing of the orders
being conveyed upstream from installation to installation. We demonstrate that these
mechanisms can duplicate the shipment quantities in the modified echelon base-stock pol-
icy that uses full information. Thus, although full demand information will not be con-
veyed up the channel due to the demand censoring effects of capacity, we demonstrate
that sufficient information about the market demand is conveyed via the orders. This sug-
gests that local information is sufficient to make ordering decisions that replicate the
policy’s orders, a significant finding for implementing supply chain inventory policies in
practice, where dynamic state information may not be readily accessible. We extend this
local information result to serial channels with completely general capacity configurations
acting under the corresponding echelon policies. We demonstrate the strong relationship
between these two mechanisms that relate to serial capacitated channels of differing lengths.
We augment our main results with two important extensions. (1) Because our focus is on
MEBS policies, which are not necessarily optimal for longer supply chains, we evaluate their
performance. We numerically show that they perform very well in general. We also provide
upper and lower bounds, which further justify their strong performance. Given that these pol-
icies are close to optimal, that they are easy to interpret, and that they can operate with only
local information, they are appealing in practical applications. (2) We compare the usage of
local information to operate a capacitated system versus incentives to sustain such a system.
We show that, similar to the noncapacitated case, it is possible to design an alternative
incentive-compatible performance mechanism such that local managers will follow the cen-
tralized solution, albeit withmore demanding information requirements.

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2021.2251.

Keywords: capacity limits • local information • inventory • multi-echelon supply chain • incentive compatible mechanism

1. Introduction and Literature
1.1. Problem Description and Preview of Results
In models with a central decision maker, the logical
interpretation is that all the available information
about the state of the system is used. On the other
hand, in decentralized settings, the information avail-
able to one party may not be available to the others. In
practice, this phenomenon of local information can
also exist in centrally owned channels where local
managers may covet and hoard their own informa-
tion. We consider a retailer who sees demand infor-
mation, but short of special arrangements that provide
visibility of the retailer’s inventory, further upstream

tiers do not have access to that information. It has
been shown (Axsäter and Rosling 1993) that it is possi-
ble to optimally operate a system with no capacity
constraints when only local inventory is visible. Such
a result depends on the policy parameters being given
to local installations, possibly by a centralized deci-
sion maker. We evaluate whether such an assertion is
true when capacity constraints are present. Although
the literature on systems with capacity constraints is
described below, a preview of the results is that while
indeed the capacity limits do censor the demand infor-
mation as it is passed up the supply chain, sufficient
information (for modified echelon base-stock policies)
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is conveyed up the channel. We illustrate this through
employing an alternative production mechanism that
results in the shipment decisions of a desirable full-
information inventory policy being mimicked, implying
that the operators of individual installations can make
decisions using local information alone. This implies that
either a centrally- or decentrally operated channel with
capacity limits may be operated in an informationally
decentralized manner. In practice, imperfections in IT
systems may prevent real-time distribution of accurate
information, and our results suggest these challenges
may be overcome by considering local information alone.

Timing of the ordering decisions is important for the
policies we consider. In the literature, papers analyz-
ing decentralized inventory systems tend to assume a
simultaneous game. However, in the decentralized
mechanisms we employ, we relax this assumption. In
a simultaneous game, the retailer’s decision is based
on the current inventory. Because the supplier (and his
supplier) have not yet received the order from the
retailer, their decisions are based on what happened in
the previous period. One can imagine two extreme
highly coordinated systems where decisions are taken
sequentially, rather than simultaneously. Imagine that
installation 1, the retailer, makes ordering decisions at
8:01 a.m., installation 2, the supplier, makes ordering
decisions at 8:02 a.m., etc. Clearly, the information
about customer orders within minutes is transferred to
the highest echelon. We will call such a system Sequen-
tial Fast (SF) because the orders are passed up the
chain rapidly, within the same time period. One can
imagine, however, another system where the higher
echelon makes their decision before the lower echelon.
For example, the retailer orders at 8:10 a.m., while her
supplier orders at 8:09 a.m., and echelon N orders N
minutes before 8:11 a.m. We will label such a system
Sequential Slow (SS) because there is obviously a delay
before an order is received by an upstream installation.
We will analyze these two systems when capacity con-
straints are present and relate them to policies for cen-
tralized and decentralized systems. A summary of our
results appears in Table 1. We show that the modified
echelon base-stock policy (MEBS), which is a centrally
operated inventory policy with full information is
equivalent to Sequential Fast (SF), a decentrally oper-
ated policy with only local information. In addition,

we show the Sequential Slow (SS) policy, which is also
a decentrally operated policy with local information is
equivalent to a longer SF system. Finally, we show
that the primary result, that a centralized inventory
policy may be operated with local information, is pre-
served under a variety of capacity configurations.

Because our paper shows sufficiency of local infor-
mation to mimic operations of a centralized system
using MEBS policy, in an extension we justify the use
of MEBS policies. The optimal policy for capacitated
multistage systems remains intractable, but several
papers (Parker and Kapuściński 2004, 2011; Janakira-
man and Muckstadt 2009; Huh et al. 2010) have pro-
vided some structure, particularly describing MEBS.
We demonstrate that MEBS policies, despite subopti-
mality, perform very well, and we also provide lower
bounds on the optimal policy and upper bounds on
the MEBS policy, which indicates that in the most
demanding cases, MEBS and the optimal policy are
very close to each other. Thus, from a practical point
of view, MEBS policies seem to be the only realistic
path to control capacitated systems. We show that
MEBS policies are not only very efficient, but also can
be operated using local information alone.

Also, as an extension, we discuss the incentives of
local managers to maintain target inventory levels.
This was the focus of Lee and Whang (1999) for unca-
pacitated systems, where they use the Veinott (1966)
induced penalty cost functions to design an incentive
compatibility mechanism. We show that the results for
capacitated systems mirror the ones for uncapacitated
systems and that an incentive compatible payment
system may be designed. We describe the contingent
information requirements of such a mechanism.

1.2. Literature Review
Because our paper shows sufficiency of local informa-
tion to replicate operations of centralized multieche-
lon capacitated systems, it is important to put it in the
broader context of relevant literature. We can natu-
rally divide the literature into that involving inven-
tory (with or without capacity limits), decentralized
operation, information decentralization, and informa-
tion sharing.

The literature dealing with inventory optimization
in serial channels originated with Clark and Scarf’s
(1960) seminal work showing the optimality of an ech-
elon base-stock policy, a result extended to the infinite-
time horizon by Federgruen and Zipkin (1984). The
optimality results pertaining to single-echelon inven-
tory systems with capacity limits in the infinite horizon
are due to Federgruen and Zipkin (1986a, b), where a
base-stock level is sought when possible, limited by
the capacity constraint, a policy later referred to as
modified base-stock. The policy for multistage capaci-
tated system was not characterized for many years. In

Table 1. Summary of Results

Operating mode Centralized Decentralized

Policy MEBS SF SS

Number of stages N ≡ N ≡ M∗
Local information � �

Full information �

* Where 2M− 1 �N
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highly visible papers Glasserman and Tayur (1994,
1995) assume suboptimal echelon-based-stock policies
and provide a method to calculate parameters of such
policies. They also illustrate that the echelon-based
policy perform very well in capacitated systems. Sev-
eral other visible papers, for example, Huh et al. (2016)
use (noncapacitated) echelon-base-stock policies to shed
light on capacitated systems. Parker and Kapuściński
(2004) characterized the optimal inventory policy for a
two-echelon system when the more limiting capacity
is at the retailer and there is a one-period leadtime
upstream of installation 2. The optimal policy, known
as modified echelon base-stock (MEBS), has each echelon
seeking a desired target but with the inventory at the
higher installation limited to no more than what the
retailer can process in one period. Although Speck and
van der Wal (1991) provided convincing logic for the
difficulty in characterizing policies with more stages,
Janakiraman and Muckstadt (2009) characterized a
number of properties of the optimal policy in the N-
stage system, bounding the number of target inventory
levels, and deriving a “two-tier base-stock” policy
when there is a two-period leadtime upstream of
installation 2 in a two-stage system. Huh et al. (2010)
illustrate a sample-path correspondence between the
echelon shortfalls in a serial system with capacity con-
straints and those of a single-stage system. Huh and
Janakiraman (2010) characterize convexity properties
of capacitated assembly systems when operating under
base-stock policies while Angelus and Zhu (2013)
describe the collapse of the same assembly system to a
capacitated serial system, à la Rosling (1989). In this
paper, similarly to the above-cited papers, we assume
MEBS policies to operate a system with local informa-
tion as well as full information.

Decentralized systems can use either “full” or “local”
information. Many decentralized systems make the
assumption that all information (inventory levels at all
installations, demand realizations) is available to each
firm, the firms just differ in their objective functions,
including Parlar (1988), Lippman and McCardle (1997),
Netessine and Rudi (2003), and Nagarajan and Rajago-
palan (2009). For decentralized serial channels, Cachon
and Zipkin (1999) considered echelon and local infor-
mation policies in a decentralized setting of Federgruen
and Zipkin (1984), finding and comparing the equilib-
ria, for cases that correspond to different information
about the current inventory. Parker and Kapuściński
(2011) subsequently establish the decentralized policy
for the same two-echelon system with capacity con-
straints, finding it is also MEBS. As opposed to papers
analyzing decentralized systems, we do not focus on
different objective functions, but instead we look at suf-
ficiency of local information to executeMEBS policies.

Interestingly, although many papers consider mul-
tiple decision makers with differing objectives, they

commonly assume access to all information. Lee and
Whang (1999, p. 634) recognize that information decen-
tralizability is a property of a viable measurement
scheme and observe that the profit of an inventory
policy utilizing richer echelon information cannot be
worse than one using only local information, “the
incremental benefit should be traded off with the cost
of implementing information sharing.” The informa-
tional requirements of Clark and Scarf’s (1960) eche-
lon policies and their descendants by definition
require any installation to be aware of all inventories
downstream or at least their sum. Axsäter and Rosling
(1993) demonstrate that, in general, echelon inventory
policies are superior to installation inventory policies
when considering (Q, r) rules. However, more perti-
nent to our analysis is their result which shows, in
uncapacitated systems, an equivalence between eche-
lon and installation order-up-to policies, where the lat-
ter does not require visibility of all inventory levels
through the channel. This result implies, as Lee and
Whang (1999) highlight, that an optimal echelon policy
may be replicated with an installation policy using
local information, for serial systems under an assump-
tion of stationarity and an initial inventory condition.
In this paper, we demonstrate a similar result for serial
systems subject to capacity constraints. A related paper,
Shang et al. (2009), compares coordination mechanisms
for serial systems operating with batch ordering with
echelon, local, and quasi-local information scenarios,
without any capacity constraints. Their result suggests
quasi-local information (local information plus consumer
demand information) can restore optimality while local
information alone cannot. We do not include batch
ordering but do include capacity constraints and illus-
trate that local operation can replicate full-information
policies. One more relevant paper is Hariharan and Zip-
kin (1995) who show that an inventory replenishment
leadtime is the complete opposite to a customer informa-
tional leadtime. This is relevant to our scenario because
our SS scenario embraces a delay in the orders being
transmitted upstream and we subsequently show an
equivalence to a longer SF channel.

Lastly, the topic of information decentralization
overlaps with the topic of information sharing, for
which there is a substantial literature. Comprehensive
reviews on information sharing appear in Chen (2003),
Lau (2007), and Choi (2010). The general theme of the
information sharing literature is to ascertain the value
of information for varying degrees of sharing or incen-
tives for sharing information in competitive scenarios
with asymmetric information. This dynamic informa-
tion includes the inventory levels at each installation
and realized consumer demand. Gavirneni et al. (1999)
is an example of early work in this area, with Li (2002),
Li and Zhang (2008), and Ha et al. (2011) examining
richer supply chain structures. Our perspective is not
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to examine the efficiency gain of sharing information
but to establish the sufficiency of known local infor-
mation in executing the optimal or equilibrium deci-
sions. Specifically we investigate whether the actions
derived from a given policy characterized with full
information may be replicated by a policy with lim-
ited (local) information.

1.3. Structure of the Paper
The remainder of the paper is structured as follows. In
Section 2, we introduce the model and associated nota-
tion. In Section 2.1, the Sequential Fast model is intro-
duced and analyzed and the Sequential Slow model is
similarly considered in Section 2.2. Section 2.3 estab-
lishes the strong relationship between the SF and SS
systems. Section 3.1 demonstrates that the Modified
Echelon Base-Stock policy performs extremely well
numerically in three- and four-stage systems, justify-
ing its earlier usage, whereas in Section 3.2 we use
bounds to illustrate conditions when MEBS performs
well. In Section 4, we describe how the results extend
to some other supply chain configurations. Section 4.1
considers a system where the most constraining capac-
ity is found internal to the serial channel, dividing it
into two bands and shows the sufficiency of the infor-
mation conveyed in the censored orders. This discus-
sion is continued for serial systems with any capacity
configuration in Section 4.2. In Section 5, we discuss
incentives for local managers to adhere to the system
target levels in capacitated systems. We conclude the
paper with a discussion in Section 6.

2. Models and Analysis
In this section, we describe the settings of our model,
which is serial channel with capacity limits at each
installation, with two types of ordering systems (slow
and fast). For each of these, we show that it can oper-
ate solely based on local information.

Consider a serial channel with multiple installations
i � 1, : : : ,N where installation 1 delivers to the final
customers and N is the uppermost installation. For the
purposes of elucidation, we refer to the lowest instal-
lation as a “retailer.” Each installation i represents a
facility conducting a transformative production pro-
cess, limited by capacity constraint, Ki. The installation
closest to the customer (retailer) has the smallest
capacity, K1 ≤ Ki. The delivery leadtime between
installations i and i+1 is one period for i � 2, : : : ,N.1

The leadtime between installations 1 and 2 can be a
general integer number of periods, although for the
purposes of exposition we will present it as one
period. We assume stationarity in all economic and
model parameters. Our global objective is to examine
whether MEBS policies2 that use full information can
be replicated by local policies, that is, policies that use

purely local information, in serial systems with capac-
ity constraints.

Centralized systems naturally use all full informa-
tion, where each installation knows all the economic
parameters and state variables at the beginning of
each period as well as demand realizations. The semi-
nal paper of Clark and Scarf (1960) established that the
optimal policy for a multistage system is an echelon
policy. It defines echelon inventory (Xj�: ∑j

i�1x
i where xi

is the installation i’s local inventory) and shows that for
the centralized system without capacity limits it is opti-
mal to raise each of the echelon levels Xj to a desired
target level Zj. The echelon policy clearly requires infor-
mation about inventory levels at other stages.

In a system with local information each installation
cannot directly observe the current inventory level of
their upstream supplier and, thus, cannot limit their
order by the inventory available at that immediate
upstream supplier.3 Local information is where each
installation knows its local inventory, the backlog
owed to its immediate downstream customer installa-
tion, and the backlog owed to it by its immediate
upstream supplier installation. The local inventory
can simply be counted, the local backlog is simply what
the installation owes the immediate downstream cus-
tomer due to a current or past delivery shortfall, and
the upstream backlog is simply the cumulative differ-
ence between what the installation has ordered and
what has been delivered. These are quantities that the
installation will naturally know merely through follow-
ing the local base-stock policy. Local information
applies to the SF and SS systems we analyze. Because
some of the order amounts may exceed the available
inventory, we assume that an order is an authorization
to deliver immediately or whenever sufficient material
becomes available. Therefore, any installation will track
a cumulative backlog of unmet orders from their imme-
diate customer and to their immediate supplier.

We will first analyze the full information model and
then attempt to show a lack of dependency of deci-
sions on any other firm’s inventory level, under the
auspices of stationary target installation up-to levels.

For systems operating with full or local information,
the following assumption holds.

Assumption 1. Each installation i ∈ {1, : : : ,N} operates
under capacity limit Ki. K1 ≤ Ki for all i. We will label K :�
K1 for convenience.

Local information systems are the focus of the
paper. The following assumptions hold only for sys-
tems operating with local information.

Assumption 2. The firms operate under given stationary,
local base-stock levels.

Assumption 3. No installation other than the retailer
observes demands.
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Assumption 4. Each firm ships whatever is in stock at the
beginning of the period in order to satisfy the current order
and any existing backlog of unmet orders from the immedi-
ate downstream customer.

Assumption 1 reflects a common system configura-
tion seen in the literature (Parker and Kapuściński
2004, 2011; Janakiraman and Muckstadt 2009). This
assumption will be relaxed in Section 4. Assumption 2
consists of three elements. Firstly, base-stock levels
are the focus of all theoretical work that builds on
Clark and Scarf (1960), in numerical evaluations (e.g.,
Glasserman and Tayur 1995, 1996), and dominant in
practice (for example, Hall and Rust 2000). Axsäter
and Rosling (1993) assumed the parameters for the
operating policy that can result in local information
operation are given, possibly by a centralized decision
maker. We likewise assume the policy parameters are
given to the local installations. The stationarity policy
parameters (base-stock levels) described in Assump-
tion 2 can arise due to stationary parameters, stationary
demand, and a long time horizon. These are utilized
by Rosling (1989), Axsäter and Rosling (1993), and
Chen (1998) amongst others. Section 3.1 is devoted to
further evaluation and justification of this setting.
Assumption 3 is the key element of our objective of
examining whether sufficient demand information is
conveyed up the supply chain. Assumption 4 describes
the mechanics of operation where a firm will deliver
goods demanded (either through the current order or
the local backlog) from the physical inventory available
at the beginning of the period.

The notation we use is as follows. At the beginning
of period t, installation i has local inventory of xit, has
a local up-to target of zi, and places an order with
its upstream supplier of ait. Unsatisfied market demand
is expressed as negative x1t . For installations i>1, instal-
lation i has a local backlog of Bi−1,i

t that represents
orders from installation i – 1 that were not met in peri-
ods prior to t, and qi−1,it that represents the shipment
from installation i to installation i – 1 in period t. Let Zi

be the centralized echelon i base-stock levels and zi ≥ 0
be the corresponding installation i base-stock levels. Zi

and zi are stationary (Assumption 2). Set Z1 � z1 and
Zi � Zi−1 + zi for i>1. Equivalently, Zi � ∑i

j�1z
j for i>1.

We denote x�y �min(x,y) and x+ �max(0,x).
The state fully describing the system at the begin-

ning of period t is:

(xt,Bt) � (x1t , : : : , xit, : : : , xNt ,B12
t , : : : ,Bi−1,i

t , : : : ,BN−1,N
t ):

For the purposes of clarity, we now formally define
full and local information. Full information is consis-
tent with the centralized operation of a system, where
the operator knows all the inventory levels at the

beginning of each period, the target levels, the realized
demands (in past periods), and all economic costs.
This is particularly pertinent in echelon inventory poli-
cies (echelon base-stock orMEBS, say) where an instal-
lation’s echelon inventory consists of the sum of local
and all downstream inventory. In reality, widespread
knowledge of such dynamic quantities is unrealistic,
because inventory levels will vary from time period to
period. Local information is where an installation i
(say, for i> 1) is aware of quantities, which are only
naturally known through operation of the installation:
the local installation inventory (xit), the local backlog
the installation owes the immediate downstream
installation (Bi−1,i

t ), the local backlog the immediate
supplier owes the installation (Bi,i+1

t ), the local target
level (zi), and the immediate downstream order (ai−1t )
(in the case of Sequential Fast but not in the case of
Sequential Slow, as described below).

In any period, first all orders are placed and
received. (The detailed timing is what differentiates
SS and SF and is described in Sections 2.1 and 2.2.)
Then demand arrives, and finally, at the end of the
period, costs are evaluated. The inventory transition
functions are as follows:

x1t+1 � x1t + q12t − dt, (1)

xit+1 � xit + qi,i+1t − qi−1,it , i � 2, : : : ,N: (2)

The quantity shipped between installations i and i – 1
(i � 2, : : : ,N) is as follows:

qi−1,it � (ai−1t +Bi−1,i
t )�xit, (3)

and qN,N+1
t � aNt . The new increment to the backlog

between installations i – 1 and i (i � 2, : : : ,N) is as fol-
lows:

Ci−1,i
t+1 � ai−1t − (qi−1,it −Bi−1,i

t )+: (4)

The backlog transition function between installations i
– 1 and i (i � 2, : : : ,N) is as follows:

Bi−1,i
t+1 � (Bi−1,i

t − qi−1,it )+ +Ci−1,i
t+1 � Bi−1,i

t + ai−1t − qi−1,it

� (Bi−1,i
t + ai−1t − xit)+: (5)

Equations (1–5) describe the evolution of the system
from period t to period t+ 1, whether it be under the
operation of SF or SS, reflecting the single-period
delivery leadtimes. Equation (3) describes the ship-
ment quantity given the order amount, which is the
lesser of the on-hand inventory and what is owed
(current order plus backorder). Hereafter, the specific
systems will be denoted with visual mnemonics: sys-
tem SF will be denoted with an arrow indicating
speed (e.g., a→it) and system SS will be denoted with a
tilde implying the slowness of an undulating wave
(e.g., ãit).
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We will now consider the two models SF and SS in
detail.

2.1. Sequential Fast Model
The Sequential Fast system is a serial decentralized multi-
stage system, where each stage orders up to a stationary
target after receiving the order from the immediate down-
stream stage. An exception to this is the retailer who choo-
ses her order quantity prior to the demand realization.4

The timing of the N-stage system is as follows:
1. For i� 1 toN, installation i places an order;
2. For i� 1 to N, the order is shipped (from installa-

tion i+ 1) and arrives (to installation i), that is, as much
of installation i’s current order and its backlog is satis-
fied as possible from installation i+ 1’s inventory at the
beginning of the period, x→i+1

t ;
3. demand is realized and is only seen by the retailer;

and
4. costs are assessed.

Specifically, the order quantities are (i � 2, : : : , N − 1):

a→1t � z→1 − x→1t +B
→12
t

( )[ ]
�K (6)

a→it � z→i − x→it +B
→i,i+1
t

( )
− q→i−1,it +B

→i−1,i
t+1

( )[ ]
(7)

� z→i − x→it − a→i−1t +B
→i−1,i
t

( )
+B

→i,i+1
t

[ ]
(8)

a→Nt � z→N − x→Nt +B
→N−1,N
t + a→N−1

t (9)

Equations (6–9) in conjunction with the transition
functions, Equations (1–5), fully characterize the oper-
ation of the SF operating regime. Note that we do not
explicitly impose the capacity constraints on the order
quantities or shipment quantities in installations above
the retailer. Also, at the retailer we only impose that
the order quantity is limited to K and we do not con-
strain her incoming shipment quantity. Although these
capacity constraints are not imposed here, the result-
ing dynamics are unaffected by their omission (see
Proposition 1).

The following definition provides equivalences
when inventory policies are mated with demands.
This facilitates comparisons of policy-demand combi-
nations in our subsequent results.

Definition 1.
a. We consider pairs (Policy1, demand1) and (Policy2,

demand2) as equivalent (≡), if all shipments between instal-
lations and all installation inventories are identical.

Policy1 � demand1 ≡ Policy2 � demand2
b. The two pairs will be considered x-Retailer equivalent

(≡xR), if all shipments between installations and all installa-
tion inventories except (excluding) those of the retailer are
identical. We denote the equivalence as

Policy1 � demand1 ≡xR Policy2 � demand2

c. If, for any demand, we have Policy1 � demand ≡ Pol-
icy2 � demand, we will state that Policy1 and Policy2 are
equivalent.

We notice that if Policy1�d≡xR Policy2�d, then
Policy1�d ≡ Policy2�d.

For the purposes of clarity, let us define the follow-
ing inventory policy.

Definition 2. The modified echelon base-stock policy, or
MEBS (Parker and Kapuściński 2004) can be written as the
mapping from initial echelon inventories (Xj) to echelon
ordering levels (Yj) where Yj ≥ Xj for all j, attempting to
reach the target echelon levels (Zj):

Y1 �min(Z1,X1 +K,X2)
Yj �min(Zj,Yj−1 +K,Xj+1) for j � 2, : : : ,N − 1
YN �min(ZN,YN−1 +K):

We call this policy MEBS(K). When we want to explic-
itly show the dependence on targets Z, we will refer to the
policy as MEBS(Z,K).

We observe that MEBS(∞) is equivalent to the eche-
lon base-stock policy of Clark and Scarf (1960) (i.e., no
capacity constraints). The critical factors that differen-
tiateMEBS(K) from SS and SF are as follows:

a. MEBS is a full information policy and the MEBS
policy does not impose a capacity constraint at any
installation but instead imposes that each installation
will never stockmore than K, Yj ≤ Yj−1 +K for j>1, thus
introducing a “band” limitation.

b. SS and SF are local information policies and they
impose capacity constraints upon the lowest installa-
tion (only) y1 − x1 ≤ K.

Under the operation of an SF system, we offer a
number of propositions. In order to clearly describe
the dependence of policies on capacity level K, we will
use SF(K) and SS(K). We first describe an existing
result for uncapacitated systems.

Consider first a system without capacity con-
straints. Note that Axsäter and Rosling (1993) effec-
tively assumes SF. Their proposition 1, for batch sizes
of one unit, states that any echelon base-stock policy
can be replicated by a Sequential Fast System. Using
our notation, this means for any demand d, SF(∞)�
d ≡MEBS(∞)�d. This implies that when the up-to
levels are identical, the quantities delivered in both
systems will be identical: q→i,i+1t (SF(∞)) � ait(MEBS(∞))
for i ≤N. The nontechnical explanation for this is that
while MEBS(∞) requires knowing the whole vector of
inventories across all installations, SF(∞) achieves the
same result by placing unconstrained orders up to
ideal target levels and remembering backlogs of
locally unsatisfied orders. Thus, as expected for a sys-
tem with no capacity constraints, the sufficient
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information about demand is perfectly passed to
higher echelons.

The following definitions will prove useful. It is
convenient to modify the periodic demand dt to dt(K),
where the latter has any raw demand in excess of K
carried into future periods (the time subscript will be
omitted when the demand process is being applied in
conjunction with an inventory policy, as defined in
Definition 1). We use the same logic to define zi(K)
and Zi(K):
Definition 3.

a. Let dt be the periodic demand, with Dt � ∑t
i�1di. We

define dt(K) inductionally, as dt(K) � (Dt −Dt−1(K))�K,
where Dt(K) � ∑t

i�1di(K).
b. Let zi(K) � (Zi −Zi−1(K))�K for i>1 where

Zi(K) � ∑i
j�1z

j(K).
We now consider capacity constraints in a serial

system for an N-stage system operating under the
MEBS policy. The proof will follow from more general
results that bridge several models: Sequential Fast, the
centralized echelon base-stock policyMEBS(∞) (derived
in Clark and Scarf 1960), and the Modified Echelon
Base-Stock policyMEBS(K).

Theorem 1. SF(K)�d ≡MEBS(K)�d.
The equivalency SF(K)�d ≡MEBS(K)�d will fol-

low from the following relationships: SF(K)�d ≡xR

SF(∞)�d(K) ≡MEBS(∞)�d(K) ≡MEBS(K)�d(K)≡xR
MEBS(K)�d. The second equivalence, for infinite
capacities, SF(∞)�d(K) ≡MEBS(∞)�d(K), is shown
in Axsäter and Rosling (1993) and, therefore, we can
directly leverage it.

The full information optimal policy is known for a
two-stage system.

Corollary 1. The optimal centralized full information pol-
icy for a stationary capacitated two-stage supply chain,
modified echelon base-stock policy, or MEBS(K) (Parker
and Kapuściński 2004) is equivalent to (can be replicated
by) Sequential Fast, SF(K).

We will use the following condition in some of the
following results. It affects the inventory levels and
local backlogs in the first period of the horizon only.
Ordering up to stationary local levels will result in
local inventory below the targets.5 Note that station-
ary policies with initial inventory conditions have
been used before (see Rosling 1989 and Axsäter and
Rosling 1993, for example).

Condition 1. Let xi1 � zi and Bi,i+1
1 � 0 for i � 1, : : : ,N.

Lemmas 1–4 establish the bridging relationships
needed for Theorem 1. Lemma 1 states installation 1
orders the cumulative demands in the previous peri-
ods in excess of K, and that an uncapacitated system

with the censored part of the cumulative demands is
equivalent to a capacitated system with the raw
demand for all installations above the retailer. Lemma
2 states that the MEBS policy with the censored target
levels is equivalent to the MEBS policy with the regu-
lar target levels so long as the initial inventory levels
are low enough. Lemma 3 states the uncapacitated
system policy with the censored demand process is
equivalent to MEBS, the capacitated system policy.
Lemma 4 states the MEBS policy applied to the capac-
itated system with the censored demand process is
equivalent to the same with the uncensored demand
process.

Lemma 1. Under Condition 1, (a) a→1t � dt−1(K), and (b)

SF(∞)�d(K)≡xR SF(K)�d.

Proof. We first show (a) by induction that

dt−1(K) � a→1t : (10)

Assume this holds for t. Clearly,

x→1t+1 � x→11 +
∑t
i�1

q→12i −∑t
i�1

di � z→1 +∑t
i�1

q→12i −∑t
i�1

di (11)

and

B
→12
t+1 � B

→12
t + a→1t − q→12t � ∑t

i�1
a→1i −

∑t
i�1

q→12i : (12)

Thus,

a→1t+1 � z→1 − (x→1t+1 + B
→
12
t+1)

[ ]
�K

� z→1 − z→1 −∑t
i�1

q→12i +∑t
i�1

di − B
→
12
t+1

[ ]
�K

� −∑t
i�1

a→1i +
∑t
i�1

di

[ ]
�K

� Dt −
∑t
i�1

a→1i

[ ]
�K � dt(K)

where the first equality arises from Equation (11), the
second arises from Equation (12), and the fourth from
Equation (10). (b) The retailer’s orders in SF(K)�d are
the same as in SF(∞)�d(K). Because all higher stages
(installations i ≥ 2) are identical in SF(∞) and SF(K)

systems, we have SF(K)�d≡xR SF(K)�d(K). w

Lemma 2. For any demand d and Xi
1 ≤ Zi(K) for

i � 1, : : :N, MEBS(Z,K)�d ≡MEBS(Z(K),K)�d.

Proof. Consider two systems, A and B. System A
operates under MEBS(Z, K) and system B operates
under MEBS(Z(K),K). Note that Zi(K) � Zi−1(K)+
(Zi −Zi−1(K))�K. Consider a specific period (index
omitted) and then installations 1 to N. For installation
1, Z1 � Z1(K) and so Y1A � Y1B because both systems
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start from the same inventory vector. Whenever the
inventory availability limit binds, the ordering deci-
sion will be common between the systems so we will
omit for conciseness. Assume Yi−1,A � Yi−1,B.

For installation i, if Xi < Zi−1(K) then YiA � YiB �
Yi−1 +K. If Xi ≥ Zi−1(K), YiA � YiB � Zi(K) and we have
two cases (i) Zi −Zi−1(K) < K resulting in YiA �
min(Zi,Xi+1) �min(Zi(K),Xi+1) � YiB, and (ii) Zi −
Zi−1(K) ≥ K resulting in YiA �min(Zi−1(K) +K,Xi+1).
Thus, YiA �min(min(Zi,Zi−1(K) +K),Xi+1) �min(Zi−1(K) +
min(Zi −Zi−1(K),K),Xi+1) �min(Zi(K),Xi+1) � YiB. The
ordering decisions will be the same in systems A and
B at all echelons, so each system will begin with iden-
tical inventory vectors in the following period. w

From now on, without loss of generality we replace
Zwith Z(K).

Lemma 3. MEBS(∞) � d(K) ≡ MEBS(K)� d(K).
Proof. While MEBS(∞) defines Yi

t � Xi+1
t �Zi, MEBS(K)

defines Yi
t � (Yi−1

t +K)�Xi+1
t �Zi. Thus, it is sufficient

to show that in MEBS(∞), xit ≤ K for all i>1, which
immediately implies that the additional restriction
does not change any dynamics. To justify this result,
we will consider a sequence of policies πi. Policy πi is
defined as follows: for all installations k ≤ i− 1, it oper-
ates under MEBS(∞), and for all installations k ≥ i it
operates under MEBS(K). The proof is by demonstrat-
ing that for all i, πi � πi+1.

Consider policy πi+1. For installation i, recall that
xit+1 � xit + ait − ai−1t . Consider two cases:

a. ai−1t < xit (not all inventory is shipped to installation
i – 1), which implies Yi−1

t � Zi−1 (the target inventory is
reached). Because Yi

t ≤ Zi, we have xit+1 � Yi
t −Yi−1

t ≤
Zi −Zi−1 ≤ K, by construction of levels Zi and Zi−1.

b. ai−1t � xit (all inventory is shipped to installation
i–1), which implies xit+1 � ait. Clearly ait ≤ xi+1t . How-
ever, in policy πi+1, we have xi+1t ≤ K.

Thus, in both cases xit ≤ K and πi+1 � πi. w

Lemma 4. MEBS(K)� d(K)≡xR MEBS(K)� d.

Proof Each system operates MEBS(K) indicating that
the installation inventories for i> 1 are xit ≤ K. At the
start of period t, both systems have identical invento-
ries other than at the retailer. Let us adopt the nomen-
clature of A for the system operating under demand
stream d(K) and B for d.

We show that in all periods a1Aτ � a1Bτ and X1A
τ+1−

X1B
τ+1 �Dτ −Dτ(K). Clearly it holds for τ�0. Let τ ≥ 1

and assume a1Aτ−1 � a1Bτ−1 and x1Aτ − x1Bτ �Dτ−1 −Dτ−1(K).
Consider two cases: (a) Dτ−1 �Dτ−1(K), and (b)
Dτ−1 >Dτ−1(K). In (a), the induction assumption gives
x1Aτ � x1Bτ and so a1Aτ � x2τ� (z1 − x1Aτ ) � x2τ� (z1 − x1Bτ ) � a1Bτ .
For (b), we show that dτ−1(K) � K. Since Dτ−1 >

Dτ−1(K), ∑τ−1
i�1 di >

∑τ−1
i�1 di(K) implying dτ−1 +∑τ−2

i�1 di−∑τ−2
i�1 di(K) > dτ−1(K) � (Dτ−1 −Dτ−2(K))�K � (dτ−1+

Dτ−2 −Dτ−2(K))�K � K. Now, since Dτ−1 >Dτ−1(K),
x1Aτ > x1Bτ and so z1 − x1Bτ > z1 − x1Aτ � z1 − x1Aτ−1 − a1Aτ−1 +
dτ−1(K) ≥ dτ−1(K) � K ≥ x2τ so a1Aτ � x2τ � (z1 − x1Aτ ) � x2τ �
x2τ � (z1 − x1Bτ ) � a1Bτ . Now x1Aτ+1 − x1Bτ+1 � x1Aτ + a1Aτ − dτ(K)
−(x1Bτ + a1Bτ − dτ) � x1Aτ − x1Bτ + dτ − dτ(K) �Dτ−1 −Dτ−1(K)
+dτ − dτ(K) �Dτ −Dτ(K). Because the retailer orders
are identical for systems A and B, all upstream inven-
tories will remain identical between both systems. w

Proposition 1. For SF(K) with installation target levels zi,
when Condition 1 holds:

a. the orders from each installation are identical, a→it � a→i+1t ;
and

b. the amount shipped from installation i + 1 to i does not
exceed K. That is, q→i,i+1t ≤ K.

Proof. For (a), assume x→it � z→i −B
→i,i+1
t +B

→i−1,i
t for i �

2, : : : ,N. Installation 1 places an order a→1t � [z→1 − (x→1t+
B
→
12
t )]�K ≤ K. Installation i orders a→it � z→i − (x→it+

B
→i,i+1
t ) + (a→i−1t +B

→i−1,i
t ) � z→i − (z→i −B

→i,i+1
t + B

→i−1,i
t +B

→i,i+1
t )+

(a→i−1t +B→i−1,i
t ) � a→i−1t . Now consider the inventory transi-

tion function for installation i>1, x→it+1 � x→it + q→i,i+1t

−q→i−1,it . Add B
→i,i+1
t+1 −B

→i−1,i
t+1 to both sides: x→it+1 +B

→i,i+1
t+1

−B→i−1,i
t+1 � x→it + q→i,i+1t − q→i−1,it +B

→i,i+1
t+1 −B

→i−1,i
t+1 . Because, B

→i,i+1
t+1 +

q→i,i+1t � a→it +B
→i,i+1
t , using the induction assumption,

x→it � z→i −B
→i,i+1
t +B

→i−1,i
t , we have x→it+1 +B

→i,i+1
t+1 −B

→i−1,i
t+1 �

x→it + a→it + B
→i,i+1
t − a→i−1t −B

→i−1,i
t � z→i + a→it − a→i−1t � z→i. The induc-

tion assumption holds trivially for t�1.
Because the retailer limits her order quantity to be

no greater than K, this property is inherited by each
higher installation: a→it � a→1t ≤ K for all i>1.

The proof of (b) is by induction on the echelon,
starting from the uppermost installation. For installa-

tion N, B
→N,N+1
t � 0 (because the outside supplier has an

unlimited supply, x→N+1
t �∞) and q→N,N+1

t � (a→Nt +
B
→N,N+1
t )� x→N+1

t � a→Nt ≤ K. Assume q→i+1,i+2t ≤ K. Then we

have two cases: (b1) B
→i,i+1
t � 0, and (b2) B

→i,i+1
t > 0. Under

case (b1), q→i,i+1t � (a→it +B
→i,i+1
t )� x→i+1t ≤ a→it ≤ K. Under case

(b2), we wish to show that if there is a backorder at
installation i+1 (owed to installation i), installation
i+1 exhausted its supply, prior to receiving its own
shipment, in the previous period. Consider

B
→i,i+1
t � B

→i,i+1
t−1 + a→it−1 − q→i,i+1t−1 . B

→i,i+1
t > 0 if q→i,i+1t−1 < B

→i,i+1
t−1 +a→it−1

and therefore q→i,i+1t−1 � q→i,i+1t � (a→it +B
→i,i+1
t )� x→i+1t � x→i+1t−1. Now,

x→i+1t � x→i+1t−1 + q→i+1,i+2t−1 − q→i,i+1t−1 � q→i+1,i+2t−1 ≤ K. Because instal-
lation i+1 has no more than K units in period t, he
cannot ship more than K units. w
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The orders will be identical for each installation
when starting off at the target level. It should be noted
that when those initial inventory levels are not at the
targets, it takes a finite number of periods to reach a
situation where the target levels are achieved, when
expected demand is less than K. The proof of the cen-
tral result of the section now follows.

Proof of Theorem 1. Using Lemma 1, Lemma 3,
Lemma 4, and Axsäter and Rosling’s (1993) proposi-
tion 1, we have the following relationships: SF(K)�d≡xR
SF(∞)�d(K) ≡MEBS(∞)�d(K) ≡MEBS(K)�d(K)≡xR
MEBS(K)�d. Although the two policies are equiva-
lent, we highlight that MEBS uses the concept of the
inventory band (range of installation inventory lev-
els), whereas SF uses the concept of capacity (how
much may be processed in a period). w

The above theorem is a key result: local information
in SF(K) is sufficient to replicate the MEBS(K) policy
that uses full information. This result is interesting
because the upstream installations never become aware
of the realized demand observed by the retailer. The
“censored” demand that the retailer passes upward in
her order is sufficient for all other installations to make
decisions that result in shipments corresponding to
MEBS(K). The suggested mechanism is quite natural
(tracking any unmet orders as a local backlog), with a
recognition that, at all installations above the retailer,
the backlog may not be combined in the same state var-
iable as local inventory. Although the retailer’s orders
do not exceed K, not-satisfied orders become an autho-
rization to deliver goods in later periods. The theorem
shows that all the upper installations naturally limit
their shipments through the following means: Even
though an installation may be authorized to send more
goods than K (through the incoming order and current
backlog), he does not have more than K inventory to
send, and when he has more than K inventory to ship,
his customer will never order more than K.

2.2. Sequential Slow Model
In the Sequential Slow system, each firm chooses their
order quantity prior to receiving their customer’s
order. The timing of the N-stage system is identical as
for the Sequential Fast system with the exception that
the sequence of installations in step 1 is reversed, as
follows:

1. For i�N to 1, installation i places order;
2. For i� 1 to N, the order arrives, that is, as much of

installation i’s current order and its backlog is satisfied
as possible from installation i+ 1’s inventory at the
beginning of the period, x̃i+1t ;

3. demand is realized and is only seen by the retailer;
and

4. costs are assessed.
The equations that govern the operation of the sys-

tem follow. The order quantities are (i � 2, : : : ,N − 1):

ã1t � [z̃1 − (x̃1t + B̃
12
t )]�K (13)

ãit � z̃i − x̃it + B̃
i−1,i
t − B̃

i,i+1
t (14)

ãNt � z̃N − x̃Nt + B̃
N−1,N
t (15)

Again, notice that Equations (13–15) with the transi-
tion functions (Equations (1–5)) fully characterize the
SS operating regime. The derivation of ãit is similar to
that for the Sequential Fast order quantity (Equations
(6–9)) other than this quantity is chosen before receiv-
ing the order from installation i – 1. The following
result involves both SF and SS systems, whereas the
remaining results characterize various properties of
the SS system. (The proofs of the following results
may be found in Online Appendix A.)

Lemma 5 (SF and SS). Under Condition 1, a→1t � ã1t �
dt−1(K).
Lemma 6. Under Condition 1, SS(K)�d≡xR SS(K)�
d(K) ≡ SS(∞)�d(K).
Lemma 7 (for d(K) and under Condition 1). ∑

k≤iã
k
t �

Zi −Xi
t − B̃

i,i+1
t .

Lemma 8. Under Condition 1, ãi+1t+1 � ãit for i � 1, : : : ,
N − 1.

2.3. Comparison of SF and SS Models
It is unsurprising that the SF system could be more
effective than an equivalently sized SS system. In this
section, we refine this comparison and distill some spe-
cific properties of two analogous systems. Intuitively,
the SS system passes information more slowly than in
an SF system because each installation orders before
receiving their immediate customer’s order. Thus, in an
SF system where a customer’s order is incorporated
into the firm’s order, two SF installations (nonretailer)
would approximate a single SS installation.

For the following results, consider an SS system
with N installations and an SF system with 2N − 1
installations: (i) z→2i−2 + z→2i−1 � z̃i, and (ii) z→2i−2 � z̃i if
z̃i < K and z→2i−2 � K if z̃i ≥ K, for all i>1.

Proposition 2. For an installation i � 2, : : : ,N in SS, x̃it +
dt−i − B̃

i−1,i
t + B̃

i,i+1
t � z̃i where B̃

N,N+1
t � 0.

Proof. The result follows from Equation (14) and Lem-
mas 5 and 8. w

Proposition 3. For two paired installations i � 2, : : : ,N

in SF, x→2i−2t + x→2i−1t +B
→2i−1,2i
t −B

→2i−3,2i−2
t � z→2i−2 + z→2i−1

where B
→2N−1,2N
t � 0.
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Proof. The result follows by adding Equation (8) for
two consecutive stages and Proposition 1. w

Theorem 2. For i � 2, : : : ,N,

a(t, i) x̃it � x→2i−2t−i+1 + x→2i−1t−i+1 − q→2i−3,2i−2t−i+1

b(t, i) B̃
i−1,i
t � B

→2i−3,2i−2
t−i+2

c(t, i) q̃i−1,it � q→2i−3,2i−2t−i+2

Proposition 4 (Relation between SF and SS). Consider
an SS system with N installations and an SF system with
2N − 1 installations,

i.

x̃Nt + dt−N(K) � x→2N−2
t−N+2 + x→2N−1

t−N+2
ii.

∑N
j�2

x̃jt +
∑N
j�2

dt−j(K) �
∑2N−1

j�2
x→jt

and
iii.

x̃1t � x→1t :

These propositions draw comparisons between the
SF and SS systems. In short, Proposition 3 shows that
an N-stage SS system can be mimicked by a longer
(2N − 1)-stage SF system, where system SS’s installa-
tion i>1 corresponds to system SF’s installations 2i−
2 and 2i− 1 together. That is, the corresponding SF
system will have double the number of nonretailer
installations. Arguably, the most important elements
of the theorem are that the shipments, backlogs, and
the inventory presented at the retailer will be identical
while the upstream inventories in the SF system will
have a clear relationship to those in the SS system, as
described in a(t, i) of Theorem 2.

It is not surprising that a longer supply chain (the
SF system) possesses more inventory than the shorter
one (the SS system). Proposition 4 shows the differ-
ence between the sum of inventory in the respective
systems is simply the sum of demands over the previ-
ous N – 1 periods. This intuitively arises due to the
additional number of periods of demand experienced
as goods traverse the longer SF channel. Notably,
there is now a relationship between the mechanics of
the SS system and system operated under the MEBS
policy. This relationship does not necessarily extend
to having identical costs because the holding costs at a
single (nonretailer) SS installation would be distrib-
uted over two corresponding SF installations. Thus,
the equivalence between SF and MEBS (and the local
information results) extends to SS, via its longer
equivalent SF channel.

3. Performance of MEBS
Because we limited our attention to MEBS policies,
even though they are not optimal for more than two
stages, in this section we investigate how well MEBS
performs. In Section 3.1 we numerically compare
MEBS with the optimal policy for three- and four-
stage systems. Following this, in Section 3.2 we estab-
lish lower bounds on the optimal policy and upper
bounds on MEBS and discuss the gap between them.
Both of these sections illustrate that MEBS performs
very well, despite not being optimal.

3.1. Numerical Performance of MEBS
We numerically evaluate systems consisting of three
and four installations with capacities K� 10, across a
wide set of parameters. These parameter sets were
chosen to consider both typical and extreme values.
While keeping the most constraining capacity cons-
tant, the demand distribution is varied from low to
high utilization and from low to high coefficient of
variation. The demand distributions have the follow-
ing characteristics: µ :� E[D] ∈ {6, 9, 9:8} and c.v.∈
{0:2, 0:5, 1:0, 1:4}. To preclude nontrivial cases in this
capacity-limited context, all demand distributions
have support over nonnegative integers with Pr(D >
K) > 0. The unit shortage cost, p ∈ {1, 5, 20,50} that
were chosen relative to a constant H1 � 1, in keeping
with practical contexts where stockout costs usually
exceed holding costs. The sets of holding costs con-
sider various cases: constant increments, both smaller
and larger; and uneven increments. However, these
were necessarily different across the three and four
installation channels. For N�3, (H1,H2,H3) ∈ {(1, 0:99,
0:98), (1, 0:95,0:90), (1, 0:75, 0:50), (1, 0:99, 0:80),
(1, 0:81, 0:80)}. For N�4, (H1,H2,H3,H4) ∈ {(1, 0:99,
0:98,0:97), (1, 0:95,0:90,0:85), (1, 0:75,0:50, 0:25), (1,
0:99,0:98, 0:80), (1, 0:82,0:81, 0:80)}. Finally, the dis-
count factor is α � 0:9. These parameter combinations
result in 240 separate cases for each channel length.

For the numerical exercise in this section, we con-
sider the optimality actions for any initial inventory
position within a band B :� {Y | Yi ≤ Yi+1 ≤ Yi +K, i �
1, : : : ,N − 1} and below the target levels. This is partly
to factor in that the problem is exercised using back-
ward induction over a finite horizon (described).
Toward the end of the horizon there may be nonsta-
tionary behavior but as the horizon lengthens, the
behavior at the start of the horizon (which has con-
verged in value) will be stationary, consistent with
our analytical models.

The solution procedure is the following. Beginning
at the final period with a zero terminal value, for each
initial state inventory position in the band B (justified
by lemma 1 in Parker and Kapuściński 2004) the opti-
mal actions, constrained by the action set, are identified
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along with the corresponding optimal value. The value
function is iterated until the difference between the
value function in successive periods for every state
value is less than 0.005 (an arbitrary value).

Separately, in every period we implement a MEBS
policy as defined in the following algorithm:

1. For t� 0, set JMEBS
t (Y) � L(Y)

2. Set Z :� arg minY∈BJMEBS
t (Y).

3. Let VMEBS
t (X) � T(Z)JMEBS

t (Y).
4. Let JMEBS

t+1 (Y) � L(Y) + αE[VMEBS
t (Y −D)].

5. Go to Step 2.
where the T(Z) operator maps JMEBS

t (Y) to VMEBS
t (X)

using theMEBS policy parameterized by Z.
For each state value (the vector of starting invento-

ries), the error of theMEBS policy relative to the optimal
value function is calculated. Summary error statistics
are the average error across stages, up to K below Z
(bigger differences lead to smaller errors), the maxi-
mum error found across the entire band (across differ-
ent initial inventory states), the error at Z, and the
error at the optimal target level. Summary statistics
can be found in Table 2 for N� 3 and N� 4. The first
observation we see is the large number of cases (out of
240) below 0.1%, 0.5%, and 1%, across the various
parameters described, suggesting that while MEBS is
not optimal, its errors tend to be very low whether
considering average errors around Z or the maximum
error in the band. Secondly, we observe that errors are
larger for the four-stage system than the three-stage
system, although the errors are still very small. Across
the 240 cases for N� 3, the average of the average
errors is 0.10% and the average of the maximum errors
is 0.23%. The corresponding numbers for N� 4 are
0.22% and 0.44%. In contrast, within their testbed of 72
problems Glasserman and Tayur (1996) find an average
error of 1.9% using modified base-stock policies (with
inventory visibility) at each stage, over those found
using IPA in Glasserman and Tayur (1995). Speck and
van der Wal (1991) are credited with constructing a
counter example to base-stock policies, under somewhat
contrived circumstances, but also illustrate that neigh-
boring base-stock policies are within 1.7% of optimality.

To further explore the efficacy of MEBS we also
considered another metric where the “pipeline” cost
(H2 +H3 +H4)E[D]=(1−α) (which should be common
to the optimal and MEBS policies) is removed and the

error recalculated.6 The “absolute” and “pipeline-
adjusted” (PA) errors are summarized in the histo-
grams in Figure 1. Clearly the PA errors are larger (as
expected) but still perform well. Also, the larger PA
errors are for the same cases, which yield larger abso-
lute errors, as we discuss.

Figure 2 illustrates how the MEBS errors behave
with respect to demand characteristics across the
three- and four-stage systems. These data represent an
average across the 20 cases representing a mean-c.v.
combination. We first note (as already observed), the
average and maximum errors for N� 4 are worse than
for N� 3. Second, we see that as the c.v. increases, the
errors increase. Third, we note that as the mean
increases, the errors decrease. Last, we see that these
errors are very small everywhere but they are worst at
the low demand with high variance combination. All
these observations remain true for the PA errors, too.
The insight from this is that MEBS performs well pre-
cisely where we would want it to, where the demands
and capacities will be colliding. In contrast, the larger
errors (absolute or PA, average or maximum) occur
for the cases where the mean demands are lower
(E[D] � 6 c.f. K�10), where a conventional echelon
base-stock policy may be more apt. Larger errors were
also observed for cases when p�1 (c.f. H1 � 1), which
is the least realistic/practical value of the unit stock-
out cost.

Although these errors are quite small, there are sev-
eral reasons why these errors are conservative (that is,
biased againstMEBS):

• The error metrics are conservative. The maximum
error is found for a state value within the band but may
not be in any typical sample path. The errors should
be measured across the more typical transient states
under each policy to better reflect the typical errors
experienced.

• We used a discount factor of α � 0:9. Some numeri-
cal experiments with higher discount factors have shown
even smaller errors (average andmaximum) arise.

• The holding cost parameters exercised are those
that would disadvantage againstMEBS-like behavior.

• The parameter sets chosen include extreme cases
whereMEBS policies would not be favored.

We attempted to consider longer chains (N> 4).
However, even N� 5 appeared to be prohibitively
time consuming while the N� 4 case was possible.7

Table 2. Count of Cases from 240 for N � 3 and N � 4

N � 3 N � 4

Average error Maximum error Average error Maximum error

Below 0.1% 204 150 163 120
Below 0.5% 229 178 220 187
Below 1% 233 230 230 214
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3.2. Bounds
In this section we define several bounds on the optimal
value and the value when usingMEBS. Ideally, bounds
are used to establish an analytical performance gap, by
establishing an upper bound on a proposed subopti-
mal policy (MEBS) and a lower bound on the optimal
policy. Our proposed bounds rely on the steady state
shortfall distribution for a single-stage capacity-limited
system (see Tayur 1993, Glasserman and Tayur 1994,
Glasserman 1997, Huh et al. 2010, Huh et al. 2016 for
various treatments of this topic). We denote this short-
fall as S with distribution G. G may be found through
the following Lindley equation recursion: Sn+1 �
max(0,Sn +Dn −K), S0 � 0, and S�dlimn→∞Sn. The
most important aspect to note is that there is no
closed-form expression for the cost of the single-stage
capacity-limited system. As noted, S ~ G,D ~ F and
µ :� E[D].

We define one lower bound on the optimal cost:
LB1 This bound includes the optimal cost for a single

installation with capacity limit with a single-period
leadtime with access to an unlimited supplier. The
higher installations are assessed the holding costs for
the average demand. As such, this encapsulates the
costs of the original model but with fewer constraints,
because it ignores any inventory availability limits.8

The bound has the cost:

1
1 − α

H1E[(z −D − S)+] + pE[(D + S − z)+] +∑N
j�2

Hjµ

[ ]

where the expectation is taken over S+D and z solves
G ∗ F(z) � p=(p+H1).
We define three upper bounds onMEBS cost:

UB1 This bound is for installation 1 to be modeled as
a single-installation capacity-limited system with a

Figure 1. Average andMaximum Error Histograms for Absolute and Pipeline-Adjusted Errors
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Notes. (a) Average errors histogram. (b)Maximum errors histogram.

Figure 2. Average of Average Errors andMaximum Errors as a Function of Coefficient of Variation
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Notes. (a) Average error as a function of coefficient of variation. (b) Maximum error as a function of coefficient of variation.
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one-period leadtime. Assume that installations 2, : : : ,N
stock K units, which is the maximum needed under
any policy with capacity of K at the lowest stage. In this
way, installation 1 will never be limited by installation
2’s inventory availability and will behave as ordering
from unconstrained inventory, so when optimizing the
inventory there, it will follow Federgruen and Zipkin’s
(1986b) modified base-stock policy for a single-stage
system. Thus, the cost consists of holding K units in all
installations other than installation 1 and holding and
backlogging cost at installation 1:

1
1− α

H1E[(z−D− S)+] + pE[(D+ S− z)+] +K
∑N
j�2

( j− 1)hj
[ ]

where the expectation is taken over S+D and z solves
G ∗ F(z) � p=(p+H1).

UB2 This bound is established by considering a
single-stage capacity-limited system with a leadtime
equal to N – 1, the number of stages (other than installa-
tion 1). The holding cost applied will be a period-specific
unit holding cost for each unit of inventory as it traverses
toward installation 1, corresponding to the holding costs
of the system described, appropriately discounted and
summed and applied to the single installation. The ratio-
nale for why this is an upper bound to MEBS is that the
economics are identical but there are fewer decisions to
bemade to control the system but with a common instal-
lation 1 decision (modified base-stock). The cost is:

1
1 − α

H1E[(z − S −D)+] + pE[(S +D − z)+] + µ
∑N
j�2

Hj

[ ]
:

where the expectation is taken over S+D and z is the
target level determined by the critical fractile and the
convolution of the shortfall and the (N − 1)-fold con-
volution of demand: G ∗ FN−1(z) � p=(p+H1).

UB3 For this bound each installation orders µ and
installations 2, : : : ,N stock µ. Unlike the other bounds,
this bound does not follow a base-stock type policy
and thus does not have renewal properties. Notice that
because a1t � µ < K ≤minjKj, the effect of the most lim-
iting capacity does not have any effect. The costs of this
bound is as follows:

∑∞
t�1

αt−1 H1E[(X1
t +µ−Dt)+] + pE[(Dt −X1

t − µ)+] +∑N
j�2

Hjµ

{ }

where X1
t+1 � X1

t +µ−Dt. The initial inventories at all
higher installations will be µ but the retailer’s initial
inventory will need to be determined.

We observe the following based on numerical
experiments:

• LB1 becomes tighter for lower demand coefficients
of variation.

• Both UB1 and UB2 are tighter than UB3.

• UB1 tends to be tighter than UB2 for higher mean
demand distributions but this diminishes as the
demand coefficient of variation increases.

• The gap between UB1 and LB1 narrows as the
demandmean increases.

The last bullet is of particular interest: LB1 and UB1
have similar forms, which allow us to evaluate the dif-
ference between them. The difference between bounds
UB1 and LB1 yields ∑N

j�2Hj(K−µ)=(1− α) and allows
us to bound the difference between MEBS and the
optimal policy but also to provide additional explana-
tion for why MEBS perform so well. Evidently, as the
mean demand increases relative to the capacity, we
should expect the cost of operating the system to like-
wise increase, so this narrowing difference between
UB1 and LB1 has real meaning. If taken as a relative
measure of LB1, the measure becomes

Δ :�UB1-LB1
LB1

�
∑N

j�2Hj(K−µ)
H1E[(z−D− S)+] + pE[(D+ S− z)+] +∑N

j�2Hjµ

(16)

and while it is not as compact, it is more meaningful.
Specifically, as the mean demand increases, the
numerator decreases and the denominator increases,
so Δ decreases. Now consider increasing the coeffi-
cient of variation of demand: Keeping the mean cons-
tant but increasing the standard deviation will lessen
Δ. Also, Δ decreases in p. These statements are formal-
ized in the following result.

Proposition 5. Δ is nonincreasing in the demand mean,
the demand standard deviation, the unit shortage cost,
installation 1’s holding cost, and nondecreasing in Hj for
j> 1 and N.

Table 3 (Panel A) provides numerical illustrations.
It shows that Δ is decreasing in the demand mean and
coefficient of variation. These numbers show Δ is less
than 1% for µ � 9:8, which is important because this is
a situation where the capacity limit has real effect. For
µ�6 the values of Δ are far larger, greater than 18%.
However, Table 3 (Panel B) shows the average errors
of MEBS compared with the optimal values for N�3.
Each cell represents the average of the average errors
of the 20 cases for that mean-c.v. combination. As
these numbers for µ�6 show, they are far smaller in
scale than Δ indicating that the real errors are far
smaller. The averages for the maximum errors are
similarly small. Interestingly, the values of the bound
(Δ) are lowest at high coefficient of variability (actu-
ally very low). But the actual differences, when we
travel from a high coefficient of variability to a low
one, are becoming even lower. As with the results for
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Section 3.1, the table also indicates that for higher
demand means, MEBS performs superbly, but it may
perform very well across all demand characteristics.

When the whole system is not heavily utilized, the
echelon-based policy is naturally optimal or very close
to optimal (because an echelon-based policy is optimal
for uncapacitated systems). When the system reaches
very high utilizations, we observe that there is very little
room for cost differences for holding inventory at the
higher installations (as µ increases, Δ decreases). This is
driven by the band structure of MEBS policies, which
limits inventory to capacity K per installation and the
natural need to maintain flow at all installations, which
requires average inventory to be above average
demand. The strong performance of MEBS combined
with its sufficient simplicity and interpretability make
MEBS effectively an obvious policy from a practical
point of view. In this context, the question of running
MEBSwith local information is an important one.

4. Extensions to Other Capacity
Configurations

In this section, we discuss how the properties we
show above extend to other capacity configurations.
In Section 4.1, we examine a system comprised of two
distinct capacities with the smaller capacity internal to
the channel. We call this a dual-band system (or
2-band system) and demonstrate that the local infor-
mation is sufficient for shipments to represent the
orders of a MEBS-like policy, just as found for the
single-band system in Section 2. In Section 4.2, we
describe how this principle can be extended to serial
systems with any capacity configurations.

4.1. Serial Systems with Dual-Bands
In this section, we consider a system with the tightest
capacity internal to the serial channel. We continue with

Assumptions 2–4. For systems operating with full or
local information, the following assumption describes
the capacity configuration, replacing Assumption 1.

Assumption 5. Each installation i ∈ {1, : : : ,N} operates
under capacity limit Ki. Installation n has the smallest
capacity, Kn < K1 and 1 < n <N. In addition, Kn ≤ Ki for
i � n+ 1, : : : ,N and K1 ≤ Ki for i � 2, : : : ,n− 1.

This assumption allows the system to be effectively
divided into two segments, each operating as MEBS-
type systems. With such a structure of capacities a
“dual-band” property would hold: it cannot be opti-
mal to store more inventory than K1 at any installation
j � 2, : : : ,n− 1 or store more than Kn at any installation
j � n+ 1, : : : ,N. This is formalized in Lemma 9. It is,
therefore, needed to use a modification of MEBS to
“dual-band MEBS” (2-MEBS, defined), that limits
inventory to the dual-band. Let B1 � {2, : : : ,n− 1} and
B2 � {n+ 1, : : : ,N}.
Lemma 9 (Generalization of lemma 1 in Parker and
Kapu�sci�nski (2004)). Assume K1 ≤ Kj for j ∈ B1, Kn < K1,
and Kn ≤ Kj for j ∈ B2. For any Xt all optimal Yt satisfy

yjt ≤max(K1,x
j
t − aj−1t ) for j ∈ B1, and yjt ≤max(Kn,x

j
t −

aj−1t ) for j ∈ B2.

Proof See Online Appendix A.

Corollary 2 (Generalization of corollary 2 in Parker and
Kapu�sci�nski (2004)). Assume that K1 ≤ Kj and Xj

t −
Xj−1

t ≤ K1 for all j ∈ B1 and Xj
t −Xj−1

t ≤ Kn for all j ∈ B2.
Then:

a. The optimal Yj
n satisfy Y

j
n −Yj−1

n ≤ K1 for all j ∈ B1 and
Yj
n −Yj−1

n ≤ Kn for all j ∈ B2.
b. If the optimal policy is followed, then the inventory posi-

tions satisfy Xj
t′ −Xj−1

t′ ≤ K1 for all j ∈ B1 and Xj
t′ −Xj−1

t′ ≤
Kn for all j ∈ B2, for t′ < t.

c.All capacities in B1may be replaced with capacities equal
to K1 and capacities in B2 by Kn without affecting costs.

Note that the results guarantee that the optimal pol-
icies are in dual-band. Therefore, for dual-band, we
replicate single-band results. Recall that for limiting
capacity at retailer, a policy in single-band is optimal.
MEBS is intuitive and well-performing policy in sin-
gle band, but not necessarily optimal. We showed that
MEBS is equivalent to SF. For two limiting capacities
operating in dual-band is optimal, but dual-MEBS pol-
icy itself is not necessarily optimal. We argue that SF in
such a case is equivalent to 2-MEBS (defined below).

We continue the earlier notation and extend our
notation to dual-band. The transition functions (Equa-
tions (1–5)) from Section 2 continue to hold. We will
presume the SF timing where each installation (other
than the retailer) orders after receiving their immedi-
ate customer’s order. The order quantities in this

Table 3. Comparison for Demand Means and Coefficients
of Variation

Panel A: Value of Δ

Coefficient of variation

0.2 0.5 1.0 1.4

µ 9.8 0.95% 0.3% 0.12% 0.12%
9 8.72% 4.78% 1.96% 1.12%
6 55.4% 46% 29.7% 18.5%

Panel B: Average of average errors

Coefficient of variation

0.2 0.5 1.0 1.4

µ 9.8 0.06% 0.11% 0.08% 0.20%
9 0.02% 0.09% 0.17% 0.21%
6 0.00% 0.12% 0.48% 1.14%
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dual-band system under SF are as follows:

a→1t � z→1 −
(
x→1t + B

→12
t

)[ ]
�K1 (17)

a→it � z→i − x→it + B
→i,i+1
t

( )
− q→i−1,it + B

→i−1,i
t+1

( )[ ]
(18)

� z→i − x→it − a→i−1t + B
→i−1,i
t

( )
+ B

→i,i+1
t

[ ]
(19)

for i � 2, : : : , n − 1,n + 1, : : : ,N − 1

a→nt � z→n − x→nt − a→n−1t + B
→n−1,n
t

( )
+ B

→n,n+1
t

[ ][ ]
�Kn

(20)

a→Nt � z→N − x→Nt + B
→N−1,N
t + a→N−1

t (21)

As before we do not explicitly impose the capacity
constraints on the order quantities at any installations
other than the retailer and installation n. Also, we do
not constrain the incoming shipment quantities at
installations 1 and n, they will naturally never exceed
the capacity levels. The order quantity equations may
be interpreted as before.

For the purposes of clarity, let us define the follow-
ing full-information inventory policy.

Definition 4. The dual-band modified echelon base-stock
policy, or 2-MEBS, can be written as the mapping from ini-
tial echelon inventories (Xj) to echelon ordering levels (Yj)
where Yj ≥ Xj for all j, attempting to reach the target eche-
lon levels (Zj):

Y1 �min(Z1,X1 +K1,X2)
Yi �min(Zi,Yi−1 +K1,Xi+1) for i � 2, : : : ,n− 1
Yn �min(Zn,Xn +Kn,Xn+1)
Yi �min(Zi,Yi−1 +Kn,Xi+1) for i � n+ 1, : : : ,N − 1
YN �min(ZN,YN−1 +Kn):
We call this policy 2-MEBS(K1,Kn). When we want to

explicitly show the dependence on targets Z, we will refer to
the policy as 2-MEBS(Z,K1,Kn).

We observe that 2-MEBS(∞,∞) is equivalent to
MEBS(∞), which is equivalent to the echelon base-stock
policy of Clark and Scarf (1960) (i.e., no capacity con-
straints). The critical factors that differentiate 2-
MEBS(K1,Kn) from SF are as follows:

a. Similarly to MEBS, 2-MEBS is a full information
policy and the 2-MEBS policy does not impose a capac-
ity constraint at any installation but instead imposes that
each installation will never stock more than K1, Yi ≤
Yi−1 +K1 for i ∈ {2, : : : ,n− 1} and the higher installations
would not stock more than Kn, Yi ≤ Yi−1 +Kn for
i ∈ {n+ 1, : : : ,N}, thus introducing two “band” limitations.

b. SF is a local information policy and imposes capac-
ity constraints upon the constraining installations (only)
y1 − x1 ≤ K1 and yn − xn ≤ Kn.

Before we show the formal results, let us consider
an example to illustrate how demand information is

conveyed through the tightest capacity, internal to the
channel. Consider the example in Table 4. In this four-
stage system, K1 � 10,K2 ≥ 10,K3 � 7, and K4 ≥ 7. In
the upper panel, the 2-MEBS is exercised over seven
periods and in the lower panel, SF is exercised. In
period 1, each system begins with inventory at the tar-
gets (Z1 � 15,Z2 � 25,Z3 � 36,Z4 � 43) and with no
backlogs in the SF system; these are the requirements
of Condition 1. The inventory levels at the start of
each period are identical between 2-MEBS and SF,
expressed as echelon and installation inventories,
respectively. Likewise you can see the order amounts
in 2-MEBS (ait) equal the shipment amounts in SF
(qi,i+1), which will be proven below. A demand of 30
in the first period (d1 � 30) is far larger than either lim-
iting capacity (K1 � 10 and K3 � 7) can handle in one
period. The effect of this is that the retailer will censor
her orders by K1 and carry the excess as a backlog.
The censored orders are conveyed up the channel (see
a12 � 10 and a22 � 10) to installation 3, but they exceed
the limiting capacity K3 � 7. Under SF, once the inven-
tory at installation 3 is drawn down faster than it can
be replenished, there begins to be a local backlog at
installation 3, B23

4 � 2. Because the mean demand over
this time duration is lower than the tightest demand
(30=7 � 4:3 < K3 � 7), the system will get back to its
initial condition (Condition 1). Although there has
been a second censoring of the original demand pro-
cess, sufficient information is conveyed up the chan-
nel and the local backlog at installation 3 ensures that
the excess demand is cumulatively retained until it
can be eroded through sufficient supply. Imposing a
2-MEBS policy on this system, the “optimal” target

Table 4. Comparison of 2-MEBS and SF

2-MEBS

t dt X1
t Y1

t a1t X2
t Y2

t a2t X3
t Y3

t a3t X4
t Y4

t a4t

1 30 15 15 0 25 25 0 36 36 0 43 43 0
2 0 −15 −5 10 −5 5 10 6 13 7 13 20 7
3 0 −5 5 10 5 13 8 13 20 7 20 27 7
4 0 5 13 8 13 20 7 20 27 7 27 34 7
5 0 13 15 2 20 25 5 27 34 7 34 41 7
6 0 15 15 0 25 25 0 34 36 2 41 43 2
7 0 15 15 0 25 25 0 36 36 0 43 43 0

SF

t dt x1t q12t x2t B12
t q23t x3t B23

t q34t x4t B34
t a4t

1 30 15 0 10 0 0 11 0 0 7 0 0
2 0 −15 10 10 0 10 11 0 7 7 0 7
3 0 −5 10 10 0 8 8 0 7 7 0 7
4 0 5 8 8 0 7 7 2 7 7 0 7
5 0 13 2 7 2 5 7 5 7 7 0 7
6 0 15 0 10 0 0 9 0 2 7 0 2
7 0 15 0 10 0 0 11 0 0 7 0 0
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levels9 at installations 1 and 3 will naturally be higher
to compensate for the limited upstream supply.

Below we expand the definition of d(K1) to d(K1,Kn)
and Z(K1) to Z(K1,Kn)

Definition 5. Let dt be the periodic demand, with
Dt � ∑t

i�1di.
a. Let an−1t be the order from installation n – 1, with

An−1
t � ∑t

i�1a
n−1
i . We define ant (Kn) inductionally, as

ant (Kn) � (An−1
t −An

t−1(Kn))�Kn, where An
t (Kn) � ∑t

i�1a
n
i (Kn).

b. Let d(K1,Kn) denote the application of dt(K1) and
ant (Kn).

c. Let z1(K) � Z1 � Z1(K), Zn(K) � Zn, zn(K) � Zn −Zn−1(K),
and zi(K) � (Zi −Zi−1(K))�K where Zi(K) � ∑i

j�1z
j(K)

and K�K1 for i � 2, : : : ,n− 1 and K�Kn for i � n+ 1,
: : : ,N.

Given Lemma 9, without loss of generality, we
replace Zwith Z(K1,Kn).
Lemma 10. For any demand d and Xi

1 ≤ Zi(K) where
K�K1 for i < n and K�Kn for i>n, 2-MEBS(Z,K1,Kn)
�d ≡ 2-MEBS(Z(K),K1,Kn)�d.

The primary result for the serial system with two
limiting capacities follows.

Theorem 3. SF(K1,Kn)�d ≡ 2-MEBS(K1,Kn)�d.

This equivalency result follows from the following

relationships: SF(K1,Kn)�d ≡xR SF(∞,∞)�d(K1,Kn) ≡
2-MEBS(∞,Kn)�d(K1) ≡ 2−MEBS(K1,Kn)�d(K1)≡xR 2
-MEBS(K1,Kn)�d. We will not onerously duplicate
the mirroring results from Section 2, but will prove
results that illustrate the distinctions from the single-
band system. We will demonstrate results for the first
two equivalencies and borrow earlier results for the
remaining ones. Proofs appear in Online Appendix A.

Lemma 11. SF(K1,Kn)�d ≡xR SF(∞,∞)�d(K1,Kn).
Lemma 12. SF(∞,∞)�d(K1,Kn) ≡ 2-MEBS(∞,Kn)�d(K1).
Lemma 13. 2-MEBS(∞,Kn)�d(K1) ≡ 2-MEBS(K1,Kn)
�d(K1).
Lemma 14. 2-MEBS(K1,Kn)�d(K1)≡xR 2-MEBS(K1,Kn)�d.

Through combining Lemmas 11–14, we achieve Theo-
rem 3. In short, the orders in SF result remain sufficient
to result in shipments identical to a MEBS-like policy.
As with the single-band result, the local backlogs cap-
ture each installation’s (cumulative) inability to imme-
diately satisfy their immediate customer’s needs. The
difference in this dual-band system is that the orders
from installation n – 1 get censored by installation n’s
lower capacity (Kn) and thus, there is a cumulative car-
ryover of installation n – 1’s orders in excess of Kn,
reflected in installation n’s orders in ant (Kn).

This theorem carries the same significance as Theorem
1, that local information in SF(K1,Kn) is sufficient to gen-
erate shipments identical to 2-MEBS(K1,Kn), the full
information policy closest to MEBS for a dual-band sys-
tem. As before, SFwill naturally limit the size of the ship-
ments without the imposition of shipment constraints.

Although we are unable to numerically test the sys-
tem with two or more bands, it is easy to see that the
same logic as for single band can be used to create
LB1 and UB1 (from Section 3.2) for such systems. If
Kn < K1, then clearly (K1 −µ)(n− 1) + (Kn −µ)(N − n+
1) may be not as tight as for a single band, but the
intuition suggesting a good performance of MEBS
remains. For any portion of the system, where capacity
is not tight, we have a policy similar to the optimal pol-
icy for an uncapacitated system and the echelon base
stock policy works well. For the portions of the system
where capacity is tight, it is increasingly likely that the
system will operate with full capacity upstream of the
bottleneck, which follows theMEBS structure.

4.2. Serial System with m Bands
Section 4.1 illustrates that in a dual-band capacity-limited
system, sufficient demand information is conveyed
via the orders to match a dual-band MEBS policy.
Consider an N-stage system where there are m> 2
constraining capacities, such that each successive
upstream constraining capacity is lower than the
downstream one. The capacities between the con-
straining capacities are at least as high as the down-
stream constraining capacity. An example system
with N� 12 and m� 3 would be (K1,K2,K3,K4,K5,
K6,K7,K8,K9,K10,K11,K12) � (15, 20, 20, 20, 14, 20, 20, 20,
10, 20, 20, 20) where the constraining capacities are at
installations 1, 5, and 9: K1 � 15, K5 � 14, and K9 � 10.
Using a 3-band MEBS policy is the most analogous
policy toMEBS and a simple adaptation of Theorem 3
will again ensure the sufficiency of the orders.
Extending Lemma 9 suggests xj ≤ K1 for j�2, 3, 4, xj ≤
K5 for j�6, 7, 8, xj ≤ K9 for j�10, 11, 12. The condition
that each successive upstream constraining capacity is
lower than the downstream one is not limiting but sim-
ply illustrates the extent of each band in the channel.

Thus, in this manner any capacity configuration
may be accommodated in a serial channel and an
appropriate m-MEBS policy may be matched by using
local information alone. We do not provide any for-
mal proofs for m bands, as dual band provides a com-
plete prototype for m bands. In summary, MEBS-type
policies can be applied to serial systems with any
capacity configurations with local information only.

5. Incentives in Decentralized Operations
with Capacity Limits

In this section, we address the topic of incentives of
locations when operated in a decentralized manner.
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To put this question in a broader context, the results of
Clark and Scarf (1960) were extended in, at least, three
interesting dimensions: (a) decentralized ownership:
Cachon and Zipkin (1999) shows that echelon structure
holds in decentralized systems, although the targets
may be different; (b) information sufficiency: Axsäter
and Rosling (1993) show that centralized policy may be
“operated” with local information only; and (c) incen-
tives sufficiency: Lee and Whang (1999) show that it is
possible to create a performance evaluation system
where local managers (divisions) will have incentives
to follow the centralized (headquarters) policy. All of
these papers deal with uncapacitated systems. For capac-
itated systems the structure of the optimal policy (MEBS)
was established for two stages and several papers
showed the difficulty in expanding it further, including
Janakiraman andMuckstadt (2009) and Huh et al. (2016).
(a) The structure of the decentralized policy was shown
again for two stages in Parker and Kapuściński (2011),
and (b) information sufficiency is the topic of this paper
in the previous sections. It is relevant to ask a third ques-
tion of whether the results (c) incentives sufficiency of
Lee and Whang (1999) can be extended to capacitated
system. This is the topic of this section.

Lee and Whang (1999) (hereafter “LW99”) design
an incentive compatibility mechanism for the Clark
and Scarf (1960) (hereafter “CS60”) system. They sug-
gest a good performance measurement scheme will be
one that has:

1. Cost Conservation, where the accounting system
can trace all costs to the individual sites, not requiring
taxes or subsidies from headquarters in any period;

2. Incentive Compatibility, where the potential for
incentive misalignment is eliminated and the mecha-
nism allows each site to make decisions consistent with
the optimal decisions; and

3. Informational Decentralizability, which means the
decisions can be made with local information alone.

LW99 design a mechanism that satisfies (1) cost con-
servation and (2) is incentive compatible. Each location
will order to their ideal stocking level that coincides
with the optimal level for the system (incentive com-
patibility). The key ingredient of their mechanism is a
payment from the supplier to the retailer when he is
unable to provide sufficient inventory for the retailer
to reach her desired stocking level. It is important to
note that Veinott (1966) expresses the idea of CS60 in
an elegant manner using stage decomposition, and
Federgruen and Zipkin (1984) provides an algorithm to
compute up to levels for the infinite-horizon case.
LW99’s mechanism design is achieved by adopting the
induced penalty cost functions of Veinott (1966) and
Federgruen and Zipkin (1984), which result from the
decomposition of the system’s value function.

The underlying intuition of LW99 is relatively sim-
ple and follows the structure of CS60. The retailer’s

and supplier’s ordering decisions are actually
influencing echelon inventory rather than stage inven-
tory. That is, the supplier’s order brings inventory
into echelon 2 (consisting of stages 1 and 2), and the
retailer brings a portion of that inventory into echelon
1. CS60 effectively shows that the optimal echelon lev-
els are the result of minimizing each echelon costs
with some added induced-penalty function (the sup-
plier having too little inventory is penalized for not
allowing the retailer to freely increase the retailer’s
inventory). Of course in practice the supplier does not
incur echelon costs. LW99 leverage these two facts by
modifying the objective functions of both supplier
and retailer and making the supplier incur echelon-2
costs (rather than his own costs) and the retailer incur
echelon-1 costs. This is a portion of the transfer mech-
anism they define. They also reassign the costs across
periods, so that the net transfers balance out. And
finally LW99 rearrange the decomposed value func-
tion so that the induced penalty cost function becomes
a payment from the supplier to the retailer.

Notably, LW99 consider the decentralized opera-
tion of a centrally owned system, referring to different
stages as divisions. Also, as is evident from the func-
tional form, the additional payments and credits
between supplier and retailer, that reassign echelon-2
costs to the supplier (and the remainder to the retailer)
are functions of a given period’s inventory levels. To
execute these payments, current inventory levels need
to be visible to both parties.

We follow the same logic as LW99 to adjust incen-
tives for both supplier and retailer. Specifically, the
reassignment of costs to echelons and across time is
identical to LW99.

Transfer pricing: in order to remove the profit motive
(and translate the problem into cost minimization)
the retailer is charged at the marginal cost of the sup-
plier, c2.

Consignment: The supplier is responsible for the
inventory cost at its site as well as at the retailer at the
supplier’s holding rate H2� h2, while retailer is only
responsible for the excess of holding costs, h1 �
H1 −H2 at its own site, thus aligning holding costs
with echelon holding costs when the inventory at the
retailer is nonnegative.

Additional backlog penalty: consistent with an ech-
elon formulation, the retailer reimburses the supplier
for negative inventory (backlog) at its site.10

Shortage reimbursement (or induced penalty func-
tion): this element matches the induced penalty in CS60,
Veinott (1966), and Federgruen and Zipkin (1984). In all
these papers, echelon 2 is penalized for not being able to
satisfy orders from echelon 1, whereas echelon 1 ignores
the possibility of not having enough inventory. LW99
leverage this dependency: transferring the penalty to
echelon 1 is the same as reimbursing echelon 1 for any
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consequences of not getting enough inventory, making
echelon 1 behave the same as an unconstrained system
in these papers.

Clearly, consignment and additional backlog penalty
require visibility of current-period inventory, while
shortage reimbursement may be implemented without
observability of inventory, simply based on orders
placed by echelon 1 not delivered by echelon 2.11

We use the first three components and modify the
fourth one. Thus, we provide details here for the
fourth element, shortage reimbursement. Parker and
Kapuściński (2004) (hereafter “PK04”) derives induced
penalty cost functions for the centralized system: in the
two-stage system, the supplier self-imposes a cost for
having insufficient stock and the retailer self-imposes a
cost when her capacity limits the supplier from reach-
ing his desired stocking level. We rearrange the decom-
posed value functions from PK04 so that there will be
potentially penalties in both directions and then, like
LW99, we change them into actual payments.

Specifically, over the finite-time horizon the value
function for the system can be decomposed into two
value functions dependent on single-echelon variables,
delivering two induced penalty functions, as follows:

Setting V0(·, ·) � 0, we have for (X1,X2) ∈ R2

Vn(X1,X2) � min
(Y1,Y2)∈A(X1,X2)

{ f 1n (Y1) + f 2n (Y2)}

where f in(Yi) � Li(Yi) +αEVi
n−1(Yi −D) and

A(X1,X2) � {(Y1,Y2) ⊂R2 | X1 ≤ Y1 ≤ X2 ≤ Y2

≤ X2 +K,Y1 ≤ X1 +K}:
Assuming X2 −X1 ≤ K, based on the results in

PK04, we can rephrase as A(X1,X2) � {(Y1,Y2) ⊂R2 |
X1 ≤ Y1 ≤ X2 ≤ Y2 ≤ Y1 +K}. From Karush’s lemma
we have:

min
X2≤Y2≤Y1+K

f 2n (Y2) � f 2Ln (X2) + f 2Un (Y1 +K):

Defining f̃
1
n(Y1) � f 1n (Y1) + f 2Un (Y1 +K), Karush’s

lemma gives us:

min
X1≤Y1≤X2

f̃
1
n(Y1) � f̃

1L
n (X1) + f̃

1U
n (X2),

where function f̃
1U
n (X2) is due to limited availability of

inventory in echelon 2 to be ordered by echelon 1.
This is the exact analog of induced penalty function in
CS60, which was used by LW99 as a payment. Func-
tion f 2Un (Y1 +K) reflects limiting echelon 2 in how
much it can order (not to exceed Y1 +K) and is due to
band structure of capacitated problem.

Operationalizing these penalties translates into
redefining the value functions for both retailer and
supplier and using Karush’s lemma for the redefined
functions. Although the details are shown in Online
Appendix B, the final outcome is that the payment

from the supplier to the retailer is as follows:

g1Un (X2) � 0 if X2 ≥ S1∗n
f̃
1
n(X2) − f̃

1
n(S1∗n ) if X2 < S1∗n

{

and the payment from the retailer to the supplier is as
follows:

g2Un (Y2 | Y1) � 0 if Y1 + K ≥ S2∗n
f 2n (max(Y1 + K,Y2)) − f 2n (S2∗n ) if Y1 + K < S2∗n

{

We note that there are many forms of penalty func-
tions g2Un that achieve the condition required for match-
ing decomposed value function at the equilibrium.
Including the payments g1Un and g2Un into the site value
functions endows the system with cost conservation and
incentive compatibility, as per LW99. Complete details of
the payment functions derived from these induced pen-
alty functions are also included in Online Appendix B.

Although our approach is the same as in LW99, we
note that for unlimited capacity the closed-form
expressions of the induced penalty cost functions for
the infinite-time horizon are known due to Federgruen
and Zipkin (1984), as the future expected economic
repercussions of the supplier’s insufficient inventory
upon the retailer can be brought back to the current
period precisely. However, in the capacity limited
case, due to the unknown number of time periods
over which the system needs to catch up, closed-form
expressions are not available.

5.1. Informational Requirements
Recalling the third attribute of a good performance
measure scheme, informational decentralizability, as we
noticed above, the value functions in both LW99 and
our modification of LW99 include payments that are
dependent on both echelon inventory levels. Thus,
these schemes do not satisfy the attribute of using
only local information for operational purposes.

It is important to recognize that the information
decentralizability features of Axsäter and Rosling (1993)
and in Section 2 use a given set of target inventory levels
rather than deriving them. In the context of a head-
quarters wishing the local sites to operate indepen-
dently, these target levels could be calculated by
headquarters and given to the sites with the instruc-
tions to follow a policy with these parameters. This
provides the opportunity to map out three categories
of information:

1. economic parameters (e.g., holding and stockout
costs), demand distribution, capacities, system length;

2. policy parameters; and
3. inventory levels and demand realizations.
Typically, the information in category 1 is fixed for

a given problem and the information in category 2 can
be derived from that in 1. It is possible that individual
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sites could learn of these static items in 1 over time.
The information in category 3, however, is quite
dynamic and changes from period to period. Unless
intended and agreed on, it would be very difficult for
an individual site to be aware of another sites periodic
inventory levels. Axsäter and Rosling (1993) and we
(in Section 2) use only the items in categories 2 and 3
to operate the system. More specifically, each installa-
tion only uses their site-specific information to operate
according to the given policy: site i> 1 uses installa-
tion inventory target zi, their local backlog Bi,i+1

t , their
immediate downstream obligation Bi−1,i

t , and the
immediate downstream order ai−1t (under SF). All of
this information would be at hand for a given site and
could be easily tracked. In contrast, when implement-
ing the incentive compatible scheme described in
LW99 and in this section, the site value functions are
dependent on all the information in categories 1 and 3
to calculate the items in category 2 and operate the
system. Thus, the incentive compatible mechanism
and the local operation mechanism have quite differ-
ent informational requirements.

6. Discussion and Interpretation
The issue of inventory visibility throughout the sup-
ply chain is particularly important when considering
the practicality of implementing a theoretically opti-
mal policy in reality. Echelon inventory policies are
demonstrably optimal for some serial systems (e.g.,
Clark and Scarf 1960; Parker and Kapuściński 2004)
and have the desirable property of ensuring a given
quantity of inventory is available to the market within
a prescribed number of periods (dictated by the num-
ber of downstream installations and their leadtimes).
The work of Axsäter and Rosling (1993) illustrate that
the echelon policies may be replicated with policies
using local information alone for serial systems with
no capacity limits. Because, in practical settings, most
systems have capacity constraints, the question is
whether information sufficiency holds in such sys-
tems. We demonstrate that local information is suffi-
cient for serial systems with capacity limits, but with a
caveat of using modified echelon base-stock (MEBS)
policies. MEBS have been previously shown to be the
optimal or equilibrium policies for some centralized
or decentralized systems but under a limiting assump-
tion of “common knowledge.”12 As far as informa-
tional requirements, the assumption of common
knowledge would appear to be more limiting in a
decentralized game where the independent firms
would be unlikely to share operational information
such as inventories, but is even likely to be a factor in
integrated channels where local managers may jeal-
ously guard such knowledge from outsiders to the
factory. Although ERP systems are intended to share

information across locations within a single enter-
prise, in practice they may be prone to inaccurate
reporting of data, delayed entry of data, incompatible
systems across locations, legacy systems, all which
indicate that an ERP system may not be a panacea for
information sharing. Ex-ante it is not obvious that the
market demand information is conveyed faithfully
upstream (in the form of orders) in a channel with
capacity limits, which serve to censor demands. In
fact, that information is not conveyed fully. We show,
however, that sufficient demand information is con-
veyed upstream so that the shipping decisions in the
channel are replicated despite the installations having
access to local information only.

We examined two decentralized mechanisms in the
capacity-limited serial channel reflecting different tim-
ing: Sequential Fast (SF) and Sequential Slow (SS).
The former reflects where the orders arriving from
downstream are coming sufficiently fast that they can
be incorporated into the current-period decisions
whereas the latter is where the orders are arriving
more slowly. We illustrate that the Sequential Fast
timing regime directly relates to shipments encoun-
tered when operating a MEBS inventory policy cen-
trally or not (Parker and Kapuściński 2004, 2011).
Although MEBS is shown to be the optimal/equilib-
rium policy only for the two-echelon system only, it is
a viable and attractive policy for longer chains, too,
and our analysis is not limited to two echelons. We
demonstrate the Sequential Slow timing corresponds
to an installation-based policy, which is a reasonable
extension of Federgruen and Zipkin’s (1986a, b) modi-
fied base-stock policy to a serial system. Then, given a
relationship between the desired target levels in SF
and SS, we establish the strong relationship between
the inventory levels in analogous systems. Specifi-
cally, we show an N-stage SS system may be repli-
cated by a (2N − 1)-stage SF system, illustrating that
the slowness of the information conveyance upstream
in SS is equivalent to a longer supply chain where
information is conveyed quickly. This is similar to
Hariharan and Zipkin’s (1995) result where future
knowledge of the customer’s orders is a direct substi-
tute for a replenishment leadtime, although our equiv-
alence is exclusively on the supply side. Thus, both SF
and SS (via its longer (2N − 1)-stage SF system) have
shipments equal to the orders under the MEBS policy.
The key to this relationship is that under SF and SS,
installations do not limit their order based on the avail-
able inventory from their immediate supplier (which
is not known when the installation has local informa-
tion only) but order their desired quantity and are
willing to receive whatever the supplier can provide.

It is natural to question whether the same result
may extend to serial systems operating under more
general capacity configurations. Under a general capacity
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configuration, operating bands can be identified, defined
as a group of neighboring installations where the lower-
most installation’s capacity is the (weakly) smallest.
Under the operation of a corresponding MEBS policy,
labelled as m-MEBS, sufficient demand information will
be conveyed up the channel if accessing local informa-
tion alone. The m-MEBS corresponds to MEBS because
the ending local inventory at every installation above
that most constraining installation within that band will
be below that capacity level.

Our paper provides an additional justification that
MEBS policies perform very well in practice and,
arguably, they may be considered a “reasonable” class
of policies for capacitated systems, especially because
the MEBS policy can be run with local information
only. The justification is based on both numerical
experiments as well as formal bounds on the optimal
policy and on MEBS. Note that MEBS policies do not
store outrageously large inventories because they are
aware of capacity limits downstream which would
make the higher inventory useless. The formal differ-
ence between UB1 and LB1 further emphasizes that
there is actually less room for wrong decisions, espe-
cially in systems with high utilizations, as long as
MEBS policies are used.

We also highlight the difference in informational
requirements between (a) operating a multistage sys-
tem for a specific givenMEBS policy versus (b) having
incentives to maintain the optimal policy. In both
uncapacitated and capacitated systems (a) can be
achieved with only local information. On the other
hand, the mechanism proposed in the literature for
uncapacitated systems (LW99), as well as its adapta-
tion to capacitated systems, requires full information
about the state of the system.

The focus on the lack of knowledge of nonlocal
inventory is deliberate. Inventory levels change so fre-
quently from period to period that they are unlikely
to be known to neighboring installations in the chan-
nel. Thus, merely by knowing her own inventory (and
local backlogs), a local manager can mimic the order-
ing pattern of an inventory policy, which hitherto
required global visibility of inventory levels, resulting
in near optimal performance.
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Endnotes
1 The assumed one period leadtimes above installation 2 are synon-
ymous with theMEBS policy we analyze later.
2 TheMEBS policy is formally introduced in Definition 2.

3 This is different from the usual multiechelon analysis with full
information where the available upstream inventory typically limits
orders.
4 This is to reflect the fact that customers likely order products
throughout the whole period.
5 Similarly to Rosling (1989), if the initial inventory is above the tar-
get level, it will be brought below those target levels after a few ini-
tial periods.
6 We appreciate this suggestion by an anonymous referee.
7 Indiana University’s Big Red II features a hybrid architecture based
on two Cray Inc. supercomputer platforms, comprised 344 XE6 com-
pute notes and 676 XK7 “GPU-accelerated” compute nodes, totaling
1020 compute nodes, 21,824 processor cores, and 43,648 GB of RAM.
8 The formal justification that this is a lower bound is based on two
steps: in step 1, the cost inventory is charged in installations above 1
is lower-bounded, by the installation holding cost multiplied by 1
unit time, while inventory may spend more than a single unit time
in any installation. Clearly the average number of units must be µ.
Step 2 is based on ignoring the potential unavailability of inventory,
which might cause stage 1 to starve.
9 We accentuate “optimal” for these target levels because they will
be optimal within the confines of the 2-MEBS policy structure.
10 Using the notation of Parker and Kapuściński (2004): stage inven-
tory levels are x1 and x2, whereas echelon levels are X1 and X2, the
new arrangement requires that echelon 2 pays for all echelon hold-
ing costs h2X2. To implement this, supplier needs to pay for all
inventory at retailer (consignment), h2(X1)+, and to be reimbursed
for negative inventory at the retailer, h2(−X1)+, which is the addi-
tional backlog penalty.
11 We discuss information aspects further below.
12 As defined in Fudenberg and Tirole (1991), p. 541.
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Kapuściński and Parker: Demand Information in Supply Chains with Capacity
1504 Operations Research, 2022, vol. 70, no. 3, pp. 1485–1505, © 2022 INFORMS



Glasserman P (1997) Bounds and asymptotics for planning critical
safety stocks. Oper. Res. 45(2):244–257.

Glasserman P, Tayur S (1994) The stability of a capacitated, multi-
echelon production-inventory system under a base-stock policy.
Oper. Res. 42(5):913–925.

Glasserman P, Tayur S (1995) Sensitivity analysis for base-stock lev-
els in multiechelon production-inventory systems. Management
Sci. 41(2):263–281.

Glasserman P, Tayur S (1996) A simple approximation for a multi-
stage capacitated production-inventory system. Naval Res. Logist.
43:41–58.

Ha AY, Tong S, Zhang H (2011) Sharing demand information in
competing supply chains with production diseconomies. Man-
agement Sci. 57(3):566–581.

Hall G, Rust J (2000) An empirical model of inventory investment
by durable commodity intermediaries. Carnegie-Rochester Conf.
Ser. Public Policy 52(1):171–214.

Hariharan R, Zipkin PH (1995) Customer order information, lead
times, and inventories. Management Sci. 41(10):1599–1607.

Huh WT, Janakiraman G (2010) Base-stock policies in capacitated assem-
bly systems: Convexity properties. Naval Res. Logist. 57(2):109–118.

Huh WT, Janakiraman G, Nagarajan M (2010) Capacitated serial
inventory systems: Sample path and stability properties under
base-stock policies. Oper. Res. 58(4):1017–1022.

Huh WT, Janakiraman G, Nagarajan M (2016) Capacitated serial
inventory systems: Policies and bounds. Manufacturing Service
Oper. Management 18(4):570–584.

Janakiraman G, Muckstadt JA (2009) A decomposition approach for
a class of capacitated serial systems. Oper. Res. 57(6):1384–1393.

Lau JSK (2007) Information Sharing in Supply Chains: Improving the
Performance of Collaboration (Erich Schmidt Verlag, Berlin).

Lee HL, Whang S (1999) Decentralized multi-echelon supply chains:
Incentives and information. Management Sci. 45(5):633–640.

Li L (2002) Information sharing in a supply chain with horizontal
competition. Management Sci. 48(9):1196–1212.

Li L, Zhang H (2008) Confidentiality and information sharing in
supply chain coordination. Management Sci. 54(8):1467–1481.

Lippman SA, McCardle KF (1997) The competitive newsboy. Oper.
Res. 45(1):54–65.

Nagarajan M, Rajagopalan S (2009) A multiperiod model of inven-
tory competition. Oper. Res. 57(3):785–790.

Netessine S, Rudi N (2003) Centralized and competitive inven-
tory models with demand substitution. Oper. Res. 51(2):
329–335.

Parlar M (1988) Game theoretic analysis of the substitutable product
inventory problem with random demands. Naval Res. Logist. 35:
397–409.
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