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We investigate the situation where a customer experiencing an inventory stockout at a retailer potentially
leaves the firm’s market. In classical inventory theory, a unit stockout penalty cost has been used as a

surrogate to mimic the economic effect of such a departure; in this study, we explicitly represent this aspect of
consumer behavior, incorporating the diminishing effect of the consumers leaving the market upon the stochastic
demand distribution in a time-dynamic context. The initial model considers a single firm. We allow for consumer
forgiveness where customers may flow back to the committed purchasing market from a nonpurchasing “latent”
market. The per-period decisions include a marketing mix to attract latent and new consumers to the committed
market and the setting of inventory levels. We establish conditions under which the firm optimally operates
a base-stock inventory policy. The subsequent two models consider a duopoly where the potential market for
a firm is now the committed market of the other firm; each firm decides its own inventory level. In the first
model, the only decisions are the stocking decisions and in the second model, a firm may also advertise to
attract dissatisfied customers from its competitor’s market. In both cases, we establish conditions for a base-stock
equilibrium policy. We demonstrate comparative statics in all models.
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1. Introduction
The treatment of consumers in classical inventory
theory has typically been quite naïve. Whereas the
aggregate consumer demand is often assumed to be
uncertain, albeit with a known demand distribution,
any further aspects of consumer behavior tend to be
limited to assuming that unsatisfied customers will
backlog, be lost, or become a mixture of these. How-
ever, a common consumer reaction to a stockout is to
change retailers during a subsequent shopping excur-
sion (e.g., Fitzsimons 2000). As stockout frequencies
can be quite high in practice (see the consumer behav-
ior discussion and citations in the online appendix
(provided in the e-companion)1 for research on typical
values), the incorporation of the consumers’ activities
subsequent to experiencing a stockout is important.
Most commonly in the inventory literature, a unit

stockout penalty cost is assessed to the firm for
each customer whose demand is not satisfied from

1 An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.
org/.

on-hand inventory immediately. This penalty cost has
numerous interpretations (e.g., expedited delivery,
premiums at alternative retailers, a more costly sub-
stitute, etc.) but commonly it is intended to represent
the economic effects of a customer’s lost goodwill.
As Heyman and Sobel (1984) note, “[I]t is difficult
to estimate such penalty costs, but usually, it is even
harder to model explicitly the dependence of the
demand process on the degree to which demands do
not exceed stock levels.” It is our objective to, indeed,
explicitly model the diminution of demand caused by
stockouts.
Schwartz (1966) appears to be the first research

article to address the issue of future demands being
affected by current poor inventory performance; it
restricts attention to a deterministic demand rate.
In Schwartz (1970), the model is extended to incor-
porate some uncertainty of the mean demand rate
in continuous time, and some recognition (although
not modeled) is given to the possibility of consumer
forgiveness, a concept we formalize in our models.
Liberopoulos and Tsikis (2006) extend this line of
analysis to quantify the unit backorder cost in this
economic order quantity context.
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Philosophically, it is far more satisfying to explic-
itly capture the actual phenomenon of interest rather
than rely on a proxy. However, one question we seek
to address is, “How good is such a proxy?” In this
paper, we exclude any unit stockout penalty cost and
instead permit some customers to backlog, some to
have lost demand in that period, and the remainder to
leave the market altogether, thus creating a shrinkage
in the demand distribution for the following period
while maintaining the usual aspects of inventory mod-
els (stochastic demand, periodic review, unit holding
costs, transition of physical inventory between peri-
ods). We focus on proving the optimality (or equilib-
rium existence) of base-stock policies under a model
with market-size dependent demand. To be precise,
we show that in each period there is an order-up-to
level that is optimal (or an equilibrium) and indepen-
dent of inventory (but not market size), and that start-
ing inventory in each period will always lie below that
level (so long as the initial inventory in period 1 is not
too high). By characterizing sufficient conditions for
optimality of such policies, we have characterized suf-
ficient conditions for the existence of a proxy stockout
cost in the analogous traditional inventory setting.
We initially consider a single enterprise concur-

rently making inventory decisions and marketing mix
decisions. Two markets are specified in the model. The
first is labeled the “committed” market, which con-
sists of consumers who purchase regularly (demand is
assumed to be affine in this market size). The second is
a “latent” market, consisting of consumers who may
have previously shopped with the firm and may do so
again in the future, or customers who are aware of the
firm but have yet to shop there. We permit a portion
of the unsatisfied consumers (i.e., those experiencing
a stockout) to be lost demand in that time period only,
a portion to backlog into the following period, and a
portion to leave the market entirely (i.e., flow from
the committed to the latent market). The two market-
ing mix decisions that the firm makes are an incen-
tive to persuade latent customers to become commit-
ted again at some cost, and an advertising decision to
attract altogether new customers to join the commit-
ted market. Operating under this regime with some
demand and parameter conditions, we discover the
firm should operate under a base-stock inventory pol-
icy. In addition, we find we can determine a value for
each committed and each latent customer.
Fergani’s (1976) (unpublished) Ph.D. thesis is prob-

ably the most comprehensive attempt to capture the
effects of inventory stockouts on future demand for
a single firm. Fergani (1976) discusses three primary
models. The first is a finite horizon Markov deci-
sion process model with a fraction of dissatisfied
customers leaving the market. We independently
analyzed this model but do not include our analysis

here for the sake of brevity. Robinson (1990) considers
an infinite horizon version of this model with a quite
general demand function, establishing tractable upper
and lower bounds on the optimal inventory policy.
Fergani’s (1976) second model incorporates an adver-
tising mechanism to boost market size; the structure
of advertising used is simple (with linear per unit
costs) and is unrepresentative of current advertising
literature. Fergani’s (1976) third model assumes that
market size is unknown at the beginning of every
period but that a prior distribution is updated in a
Bayesian fashion in every period. In comparison, we
incorporate more general advertising functions, con-
sumer forgiveness, and consumer incentives; these are
all elements missing in Fergani’s (1976) models.
Like the majority of the traditional inventory lit-

erature (see, e.g., Porteus 2002, Zipkin 2000), we do
not allow the firm to set price. There are two equally
compatible narratives for this setting. The first is sim-
ply that inventory decisions are made by a separate
set of decision makers on a more frequent timeline
than pricing decisions. The second is that the firm is
a monopolist without setting a retail price (e.g., in a
regulated environment) or that the consumers are not
responsive to changes in price.2

After consideration of the single firm model, we
then shift our attention to a competitive model, specif-
ically a duopoly where dissatisfied customers leave
the committed market of one firm and join the com-
mitted market of the other firm. That is, the “potential
market” (in lieu of the latent plus external markets
considered in the single-firm model) of one firm is
the committed market of the other. In this Markov
game (see, e.g., Başar and Olsder 1999, Heyman and
Sobel 1984, Fudenberg and Tirole 1991, Parker and
Kapuściński 2008), the state space at the beginning of
each period consists of both firms’ initial inventory
levels and committed market sizes. Initially, we iso-
late the firms’ decisions to stocking levels only, allow-
ing for partial backlogging, lost sales, and customer
defection as in the single-firm model. Under similar
demand and parameter assumptions to the single-
firm model, we show there is a base-stock equilibrium
policy for each firm.
This duopoly model is a direct extension of the

works of Hall and Porteus (2000) and Liu et al.
(2007) to a nonperishable inventory setting. Those
works study systems where duopolists compete by

2 The potential shortcoming of this interpretation is that the firm
should therefore choose an extremely high price; however, eventu-
ally nearly all customers will react against an extraordinarily high
price. Assuming the firm adopts but does not set price (i.e., a price
taker) reconciles this interpretation.
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installing capacity in every period but where any ser-
vice failures result in market diminution. Liu et al.
(2007) extend Hall and Porteus’ (2000) analysis with
a more general demand function that we have also
adopted in our models. The multiperiod nature of
those models, with market reductions in a compet-
itive framework, makes their work similar to ours.
Their models describe a service system especially
well, particularly where capacity may be changed at
short notice. They also carry over to production set-
tings where the “capacity” is now intended to rep-
resent perishable inventory in a newsvendor setting.
A similar setting with perishable inventory is also
considered in Henig and Gerchak (2003).
The work of Hall and Porteus (2000), Liu et al.

(2007), and Henig and Gerchak (2003) all operate
under the assumption that physical inventory or
consumer backlogs are not carried between periods
whereas we track physical inventory, backlogs, lost
sales, and market defections. We are aware of no other
dynamic game literature other than those described
above that deals with the relationship between mar-
ket sizes and stockouts, and we believe our paper to
be the first in this setting to allow inventory and back-
logs to carry over from period to period.
Finally, we consider a model where firms can

actively try to attract dissatisfied customers from the
other firm. We again show existence of a base-stock
equilibrium policy. Therefore, our work is also related
to inventory duopoly models that consider how cus-
tomers are treated after experiencing a stockout.
In particular, Parlar (1988), Lippman and McCardle
(1997), and Netessine and Rudi (2003) have some
fixed proportion of disappointed customers’ demand
transferring to the other retailer and the loyal but dis-
appointed customers’ demand considered lost; Avsar
and Baykal-Gürsoy (2002) present the same treat-
ment in the infinite horizon. Ahn and Olsen (2007),
in a subscription model context, extend Lippman
and McCardle’s (1997) work to multiple periods.
Netessine et al. (2006) present several (independent)
treatments of customers’ backlogging and transfer
behavior in a dynamic environment. Olsen and Parker
(2008) generalize and integrate these treatments in
a single model with backlogging, lost sales, and
transfers.
We allow the transfer of some portion of unsatis-

fied customers between markets but do not permit
consumer searches within the same time period, an
approach partly validated by Fitzsimons (2000) who
finds that consumers having experienced a stockout
are substantially more likely to visit an alternative
retailer during a subsequent shopping outing, although
we acknowledge that consumer search within the
same period could certainly occur, too. It should
be noted that we treat the consumer behavior of

switching between markets as a black box and do not
delve into the psychological elements underpinning
these decisions (see Fitzsimons 2000 for an illustra-
tive study of consumer choice, conflict, and behav-
ioral responses to stockouts). Indeed, we assume that
customer behavior is governed by Markov (memo-
ryless) transition functions. Mahajan and van Ryzin
(1999) summarize consumer choice models where the
retailer can directly or indirectly control consumer
substitution, the latter of which encompasses our
approach.
We are aware of a few papers that address the issu-

ing of incentives after customers experience a stock-
out. In particular, Netessine et al. (2006) examine a
firm’s incentive to persuade its own customers to
remain loyal (i.e., backlog locally) rather than switch
retailers after experiencing a stockout; DeCroix and
Arreola-Risa (1998) consider a similar incentive for a
monopolist. Anderson et al. (2006) find that the cost
of such incentives to backlog do not tend to offset the
increased revenues of these consumers; they recom-
mend a targeted discounting strategy. Another paper
dealing with the competitive aspects of customer
defection is Gans (2002), where customers experience
the quality of a service or product supplied by a firm
and update a prior belief about that firm’s quality in
a Bayesian manner. Likewise, Gaur and Park (2007)
incorporate consumer learning and retailer service
levels in ascertaining competitive inventory policy.
We address the idea of offering incentives to cus-

tomers after they experience inventory disappoint-
ment; however, we focus on firms attempting to draw
customers from elsewhere to their markets. In the
single-firm model, the firm persuades “latent” cus-
tomers to become “committed” customers whereas in
the duopoly model, each firm tempts dissatisfied cus-
tomers from its competitor’s market. Further, unlike
our paper, none of the papers just noted have an
underlying market from which demand is drawn. The
consumer behavior literature contains interesting and
relevant work that provides further empirical motiva-
tion for our work. In the interest of space, our survey
of this literature may be found in the online appendix.
As outlined above, the overarching goal of our

research is to investigate how realistic a model can
be with respect to consumer behavior and still retain
optimality (or equilibrium existence) of base-stock
policies (and, hence, for the single-firm model, prove
the existence of a proxy lost sales cost). Within this
objective our contribution is fourfold. First, we explic-
itly model a range of consumer decisions in the face of
stockouts. Second, we provide a much more detailed
single-firm model than previously studied. In par-
ticular, we allow general advertising and explicitly
capture consumer forgiveness through a latent mar-
ket. This model is provided in §2. Third, we pro-
vide what we believe to be the first dynamic duopoly
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model that addresses the relationship between mar-
ket size and stockouts while allowing inventory and
backlog carryover from period to period. Finally, we
extend our duopoly to allow firms to actively try to
attract dissatisfied customers, an extension missing
from the few works that do consider the relationship
between market size and stockouts (none of which
carry inventory between periods). Both duopoly mod-
els are given in §3. Concluding remarks appear in
§4 and the appendix and online appendix contain all
proofs.

2. The Single-Firm Model
In this section, we introduce and analyze a “single-
firm” periodic review model. The firm begins every
time period t knowing the current inventory level (xt),
the size of its committed market (�t), and the size of
its latent market (�t). The committed market consists
of regular purchasers and the latent market is made
up of former customers who left the committed mar-
ket due to experiencing an inventory service failure. In
reality, these markets must be estimated and will not
be known exactly; here, for ease of exposition and ana-
lytic tractability, we assume they are indeed known.
Internet retail providers are most likely to have a good
estimate of these markets, although with frequent pur-
chaser cards and modern data mining techniques, it
appears likely that firms will become increasingly able
to provide such estimates. It is also probable, in our
estimation, that a Bayesian model similar to that con-
sidered in Fergani (1976) may be able to be layered on
our model; we have not pursued such an extension
and leave it as a potential subject of future research.
Let Dt��� be the uncertain demand in period t aris-

ing from a committed market of size �. The firm
is assumed to know the distribution of Dt���. When
the period is clear, we will drop the subscript t
for notational convenience. We make the following
assumption:

Assumption 1. Demand in period t is distributed as
Dt��t� = p1�t + �p2�t + p3�	t , where p1
 p2
 p3 ≥ 0 and 	t
is a mean zero random variable. The random variables �	t�
are independent and identically distributed �i.i.d.� and are
drawn from a continuous distribution with a support that
is a closed subset of −p1/p2
��, having cumulative dis-
tribution function �c.d.f. � ��·� and density ��·�.
This demand form is analogous to that presented

in Liu et al. (2007), where the reader is referred for
further explanation and justification of this form. It
contains additive and multiplicative demands as spe-
cial cases.3 Assumption 1 does not restrict the form of

3 We are grateful to a reviewer for suggesting we adopt this demand
form. Our original form was multiplicative only (p1 = p3 = 0,
p2 = 1). In that case, a continuous distribution is not necessary in
the finite horizon model.

the distribution for demand; it does, however, imply
that both the mean and standard deviation of demand
are affine in market size and that the coefficient of
variation of demand is nonincreasing in market size.
This assumption will be seen later to add significant
tractability, leading to a greater number of insights
than would otherwise likely be possible.
The firm makes the following decisions simultane-

ously in each period: (1) an inventory stocking deci-
sion (y); (2) a marketing decision to persuade latent
customers to return to the committed market (�);
and (3) an advertising decision to increase the size
of the committed market (�). The flow decision �
is the expected proportion of the latent market that
is diverted to the committed market. The external
advertising decision � is the expected total flow of
customers from outside both markets in response to
advertising. We allow all these variables to be con-
tinuous. Thus, we are in effect assuming that market
size (and, hence, demand) and market flows are large
enough such that continuous flow-based approxima-
tions suffice. Figure 1(a) depicts the flows between the
pools.
Suppose that control � is applied in period t. We

assume the proportion of customers who switch from
the latent pool to the committed pool is Rt���, where
ERt���� = �. The manipulation of � is presumed to
be at a cost per latent customer of C���. Thus, if there
are � customers in the pool of latent customers and
a control of � is applied, then Rt���� customers will
choose to return to the committed pool and the total
cost will be C����. We have deliberately kept the form
of this switching control general so that it may reflect
coupons, targeted advertising, or some other market-
ing mechanism. The function C��� is assumed to be
strictly convex, nonnegative, and increasing in �.
Likewise, we suggest that advertising externally

can attract new customers to the committed pool from
outside. A (similarly general) advertising cost of K���
will attract Ut��� customers to the committed pool,
where EUt����= �. We assume there is a finite point ��
after which K��� is strictly convex, which will pre-
clude infinite advertising in a period being optimal.
Clearly, S-shaped advertising functions are a subcase
of these assumptions. We do not model any inter-
action between Rt��� and Ut���, assuming that � is
indeed only targeted at external customers. We make
the following assumption:

Assumption 2. The sequences of random variables
�Rt���� and �Ut���� are i.i.d., mutually independent, inde-
pendent of all other random variables in the system, and
have means �= ERt���� and � = EUt����, respectively.

In each period t, let �t be the random propor-
tion of customers experiencing a stockout who choose
not to backlog and �t be the random proportion of
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Figure 1 Schematic Figures of the Single-Firm and Duopoly Models with Notation
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nonbacklogging unsatisfied customers who choose to
leave the committed market. This formulation was
chosen to reflect a greater desire for the firm’s prod-
uct by the customers who backlog. However, the
parameters governing the division of the unsatisfied
customers into backlogging, immediate lost sales, or
market defection routes is arbitrary so long as market
losses occur only if inventory is depleted. The rout-
ings can, in fact, be arranged in any manner (e.g., only
backlogging customers defect or some random combi-
nation of backlogging and nonbacklogging customers
defect). Further, some of these proportions may be
zero so that total backlogging and total lost sales are
both subcases of our model. We make the following
assumption:

Assumption 3. The sequences of random variables ��t�
and ��t� are i.i.d., mutually independent, independent of
all other random variables in the system, and have means
� = E�t� and �= E�t�, respectively.

Assume controls �t and �t are applied in period t.
Then, the state transition functions are as follows:

xt+1 = �yt −Dt��t��
+ − �1− �t��Dt��t�− yt�

+

= yt −Dt��t�+ �t�Dt��t�− yt�
+
 (1)

�t+1 = �t −�t�t�Dt��t�− yt�
+ +Rt��t��t +Ut��t�
 (2)

�t+1 = �1−Rt��t���t +�t�t�Dt��t�− yt�
+
 (3)

where we define x+ = x if x≥ 0 and x+ = 0, otherwise.
For future reference, we similarly define x− =−x if
x≤ 0 and x− = 0, otherwise. Equation (1) simply trans-
fers any leftover physical inventory into the follow-
ing period and likewise the backlogging proportion
(at rate 1−�t) of the unsatisfied demand. Equation (2)
states that the new committed market size consists
of the old committed market size less outflow to
the latent market due to stockouts plus inflow from
the latent market due to forgiveness or incentives
plus inflows due to external advertising. Equation (3)
states the new latent market size is the old latent mar-
ket size plus inflow from the committed market less
outflow back to the committed market.

Assume r > 0 is the retail price and h> 0 is the per-
unit holding cost in each period. We will assume a
discount factor of !, 0<!< 1. The objective is to max-
imize total discounted expected reward over either
the finite or infinite horizon (this will be shown to be
well-defined in the infinite horizon). In the finite hori-
zon, assume there are T periods. Consider the firm’s
expected periodic profits in any period t, when con-
trols (yt
�t
 �t) are applied, 1≤ t ≤ T :

rEmin�yt
Dt��t��+ x−t �−hE�yt −Dt��t��
+�

−C��t��t −K��t� (4)

=−rE�Dt��t�− yt�
+�−hE�yt −Dt��t��

+�

+ rEDt��t��−C��t��t −K��t�+ rx−t $ (5)

The revenue term in (4) consists of the sum of
the backlog and the lesser of demand and available
inventory. Clearly, the final term of (5) can be “rolled
back” into period t − 1 using (1) and discounting at
rate !, thus producing a per-period reward of

−r̃E�D��t�− yt�
+�−hE�yt −D��t��

+�+ rED��t��

−C��t��t −K��t�


where r̃ = r�1−!�1−���.4

We will assume throughout that in the finite hori-
zon model, the terminal value has been normalized
by rx−T+1. In other words, if �VT+1�x
 �
�� is the actual
terminal value function, then we will use a termi-
nal value of VT+1�x
 �
��= �VT+1�x
 �
��− rx−. Thus,
all assumptions on VT+1�x
 �
�� should be translated
into assumptions on the actual terminal value func-
tion �VT+1�x
 �
�� by adding rx− to VT+1�x
 �
��.
If demand is nonrandom (i.e., 	 = 0), an affine

demand function (in committed market size) can be

4 Note that no acquisition cost has been included in the model but
could be easily incorporated along the lines suggested by Veinott
(1966). For example, if the acquisition cost is w�yt −xt�=wyt −wxt ,
the first term is absorbed easily. The second term is accommodated
using Equation (1), which will ultimately result in a modified rev-
enue term, r̃ = r�1−!�1−���−!w�, which is positive when r >w.
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seen to be necessary for concavity of the one-period
reward function (and is likely also necessary for most
forms of stochastic demand). As our focus is on the
optimality of base-stock policies, we restrict atten-
tion to concave revenue functions. This is the pri-
mary reasoning behind the affine demand function in
Assumption 1. However, this assumption also leads to
a change of variable that significantly aids the model
tractability. Note that linear demand assumptions
were made (for similar reasons) in Fergani (1976), Hall
and Porteus (2000), and Henig and Gerchak (2003),
and the affine form used here was also used (for sim-
ilar reasons) in Liu et al. (2007).
Define the functions

y−1�x
 ��=���x− p1��/�p2�+ p3��

and
yf �z
 ��= p1�+�−1�z��p2�+ p3�


where the notation �−1 denotes the inverse of the
cumulative distribution function �. We perform a
change of variable, letting zt = y−1�yt
 �t� so that yt =
yf �zt
 �t�. Then,

yt −Dt��t�= �p2�t + p3���
−1�zt�− 	t�

and zt is the chosen critical fractile for satisfied
demand. The transition functions may, therefore, be
rewritten as follows:

xt+1= �p2�t+p3���
−1�zt�−	t+�t�	t−�−1�zt��

+�
 (6)

�t+1=�t−�p2�t+p3��t�t�	t−�−1�zt��
+

+Rt��t��t+Ut��t�
 (7)

�t+1= �1−Rt��t���t+�p2�t+p3��t�t�	t−�−1�zt��
+$ (8)

Further, the expected periodic reward for any pe-
riod t is

L�zt
�t
�t
�t
�t�

*= �p2�t+p3��−r̃E�	t−�−1�zt��+�−hE��−1�zt�−	t�
+��

+rp1�t−C��t��t−K��t�

= �p2�t+p3�L̃�zt�+rp1�t−C��t��t−K��t�


where

L̃�z�
*=−r̃E�	t −�−1�z��+�−hE��−1�z�− 	t�

+�$

Note that both the reward and transition functions are
affine in �t and �t .
We define

S�z�
*= E�t�t�	t −�−1�z��+� (9)

as the expected proportion of lost customers when
inventory is stocked to critical fractile z and

z∗my
*= argmax

z

L̃�z�
 (10)

where z∗my is the optimal scaled myopic inventory
quantity. If controls (zt
�t
 �t) are applied in period t,
then

E�t+1�= �t − �p2�t + p3�S�zt�+�t�t + �t
 (11)

E�t+1�= �1−�t��t + �p2�t + p3�S�zt�$ (12)

Note that −S�z� and L̃�z� are both concave in z with
−S�z� also being nondecreasing in z.
Our model contains limited memory; it is assumed

that customers in either market are averaged across
their tenures in the market. This is equivalent to
assuming that consumers are memoryless about their
previous experiences, good or bad, in the markets.
This is partially justified by Anderson et al. (2006)
who find no difference in response to a stockout
between customers who have purchased previously
and novice customers.
Another possible extension to our model is to

apply a multiplicative stochastic shock to the latent
market to reflect the chance that some latent cus-
tomers will leave this market (either through mov-
ing away or through forgetting about the retailer) or
to reflect other nonpurchasing customers becoming
newly aware of the retailer (e.g., moving to the region
from elsewhere). All the analysis is preserved (with
some additional technical conditions on the average
size of the shock) but little additional insight is gained
with its inclusion. A similar shock cannot be applied
to the committed market without destroying the ana-
lytical structure of the model.

2.1. Finite Horizon Results
Using the (normalized) terminal value function
VT+1�x
 �
��, recursively define the optimal profit-to-
go or value function in period t, 1≤ t ≤ T , as

Vt�x
�
��

= max
z≥y−1�x
��
0≤�≤1
�≥0

�L�z
�
�
�
��+!EVt+1�xt+1
�t+1
�t+1���$

We seek to characterize the structure (with respect
to (x
�
�)) of the optimal decision variables z∗t , �

∗
t ,

and �∗
t , which achieve the maximum in the above

equation.
The affine nature of both the one-period revenue

and transition functions, coupled with appropriate
assumptions on the terminal value, will allow us to
write Vt�·� as an affine function of (�
�) and indepen-
dent of x (so long as x is below the desired base-stock
level). Above the desired base-stock level, Vt�·� will be
bounded above by its value at the desired base-stock
level. This will allow a simple characterization of the
optimal decision variables as well as intuition into
the components of the value function. Our inductive
argument will rely on proving that starting inventory
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in the following period is below the desired base-
stock level. We will also assume that initial inven-
tory in period 1 is below the desired level; however,
this (relatively mild) condition is for convenience only
and the online appendix provides an extension to the
proof of Theorem 1 where this assumption is relaxed.
As it will be shown that the desired critical fractile is
at least the myopic level, we state the assumption on
period 1 inventory as follows:

Assumption 4. Assume that initial inventory x1 ≤
yf �z

∗
my
 �1�.

If the terminal value of committed customers is low,
then the optimal decision will likely be to save on
inventory costs and ramp down market size near the
end of the horizon. As future market size is stochastic,
this would likely imply that optimal policies depend
(possibly in a nonsmooth fashion) on both the cur-
rent market size and the number of periods to go.
Similarly, if the terminal value of committed cus-
tomers is quite high, then similar effects will likely
occur with a growing market. Assumption 5 places
the terminal value between “too high” and “too low.”
Of course, the effect of any assumption on terminal
value becomes increasingly diminished as one moves
further from the end of the horizon. We make the fol-
lowing assumption:

Assumption 5. Assume, for any x, VT+1�x
 �
�� =
aT+1�+ bT+1�+ cT+1, where

aT+1 =
p2L̃�z

∗
my�+ rp1

�1−!�2

 (13)

bT+1 = !aT+1
 and cT+1 = 0$ (14)

Salvage value functions are frequently used to
(i) overcome undesirable and unrepresentative behav-
ior at the end of a time horizon, (ii) endow a model
with analytical tractability, or (iii) reflect economic
reality. We use salvage value functions for reasons (i)
and (ii) and note that such an assumption will not be
needed in the infinite horizon model.
The final assumption in this section is a technical

one that ensures that the future expected value of a
committed customer is at least that of a latent cus-
tomer. As it seems likely that the firm would prefer to
keep customers in the committed market rather than
lose them to the latent market, it is likely that the
conditions needed to guarantee this condition are also
reasonable:

Assumption 6.

1−�∗
T − p2��E�	t −�−1�z∗my��

+�≥ 0$ (15)

Assumptions analogous to Assumption 6 were
made in both Hall and Porteus (2000) and Liu
et al. (2007). Liu et al. (2007) contains further discus-
sion and justification for their analogous assumption,
referring to it as “very mild” (see their Condition 3
and the discussion surrounding it). We are now ready
to present the main result of this section:

Theorem 1. Recursively define

mt =max
0≤z≤1

�L̃�z�−!S�z��at+1− bt+1��
 (16)

at = p2mt +!at+1+ rp1
 (17)

bt =max
0≤�≤1

�−C���+!��at+1− bt+1��+!bt+1
 (18)

ct =max
�≥0

�!at+1�−K����+ p3mt +!ct+1$ (19)

Then, under Assumptions 1–6,

z∗t = argmax
0≤z≤1

�L̃�z�−!S�z��at+1− bt+1��

�∗
t = argmax

0≤�≤1
�−C���+!��at+1− bt+1��

�∗
t = argmax

�≥0
�!at+1�−K����

and for x≤ yf �z
∗
t 
 ��

Vt�x
�
��= at�+ bt�+ ct$

For x > yf �z
∗
t 
 ��, Vt�x
�
�� is bounded above by

Vt�yf �z
∗
t 
 ��
 �
��. Further, z

∗
t , �

∗
t , at , bt , and at − bt are

nondecreasing in t with at − bt ≥ 0 and z∗t ≥ z∗my , for all t,
1≤ t ≤ T .

The proof may be found in the appendix and fol-
lows by an inductive argument. Key to the main
inductive step is to show that the desired base-stock
level is both an affine function of the committed
market size and guaranteed to be no less than the
inventory at the start of the period. In some cases,
inventory may be equal to the desired level; in these
cases, no order will be placed (analogously to tra-
ditional inventory models with no fixed costs). The
argument for why future inventory will be below
the desired base-stock level proceeds as follows: If
the committed market grows, then the affine nature
of inventory in the market size will imply that the
following period’s inventory cannot be “too high.”
However, if the market shrinks, then there must
have been dissatisfied customers; hence, inventory
has been depleted and by definition again cannot be
“too high.”
This same basic argument is used (and formalized)

in the proofs of Theorems 1–4 in this paper. In these
theorems, we make the assumption (Assumption 4 for
Theorem 1) that initial inventory in period 1 is below
the desired level (although this assumption is relaxed
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for Theorem 1 in the online appendix). Hence, by the
above argument, initial inventory will be below the
desired level in all future periods. In this way, we
avoid needing to prove that no order is placed if ini-
tial inventory is above the desired level, although we
hypothesize that this is the case (and have formally
proven it to be the case for Theorem 1).
Theorem 1 yields several observations. First, the

overall value of the firm can be separated into ele-
ments of the value of the committed market, the value
of the latent market, and any remaining value. An
appealing interpretation is that the variables at and bt
are the per customer values in each of these mar-
kets. So, at is the discounted expected value of a cur-
rent committed customer in period t, accounting for
all possible expected movements over the remainder
of the time horizon. This gives the firm some real
intuition of how its inventory policies and customer
responses to them affect the value of those customers
to the firm in a tangible outcome: sales. Notice also
that the base-stock level in period t, y∗

t , equals p1�t +
�−1�z∗t ��p2�t + p3� and, therefore, is affine in commit-
ted market size �t .
The difference, at − bt , is the incremental bene-

fit of having a committed rather than a latent cus-
tomer. This increment is shown to be positive (using
Assumption 6), which is natural because only a com-
mitted customer can purchase from the firm and the
best a latent customer can do is to forgive and begin
buying in the future. We also show that this incre-
ment is nondecreasing as the end of the horizon
approaches, which we would argue is also natural
as there are fewer and fewer opportunities for latent
customers to become committed and committed cus-
tomers have a sufficient salvage value.
The second observation is that the optimal inven-

tory policy (operating under standing assumptions)
is base-stock. The efficacy of this unadorned policy
is well-known; it is a natural and appealing policy
for implementation. The immediate conclusion is that
the unit stockout cost used in classical theory as a
surrogate for market shrinkage due to lost future
demand and customer goodwill can indeed be a valid
proxy. By explicitly modeling this market shrinkage
rather than using the unit cost, we also arrive at
the same structural optimal policy. This can be true
under numerous modeling “accessories” (e.g., con-
sumer forgiveness, advertising, coupons) or under
minimal assumptions (as in the corollary below). The
counterpoint to this statement is that the base-stock
inventory policy may not be optimal under all cir-
cumstances. Thus, while the unit stockout cost can
continue to be used in the future to approximate lost
future demand, it should be used with some caution,
noting whether the conditions appear justified.

The optimal level of advertising to the latent pool �∗
t

depends on the future per-customer value difference
at+1− bt+1 but not on the size of either the committed
or latent markets (although total advertising to the
latent pool is proportional to the latent market size).
Similarly, the optimal amount of external advertising
�∗
t depends on the future value of a committed cus-
tomer at+1 but not on the market size. This lack of
dependence in market size is due to our affine model
structure, which does not reflect economies of scale.
Recall that an affine demand structure was necessary
to prove concavity of the one-period profit function,
so a model with economies of scale would need an
entirely new method of analysis, which is beyond the
scope of this paper.
We recognize that Fergani (1976) offers a stream-

lined inventory model where future demand is
affected by current stockouts and the demand may
adopt a linear or affine form in the market size. His
model does not include the latent market at all and,
thus, we exclude those parameters in the following
corollary. This implies there will only be an outflow
of (dissatisfied) customers from the committed mar-
ket and no resulting inflow (from the latent mar-
ket or from external advertising5), thus this model
is appropriate for a finite time horizon only. On the
other hand, this streamlined model is burdened by
few restrictive assumptions.

Corollary (Fergani 1976). Setting � = � = 0, the
system optimally operates under a base-stock inventory
policy.

2.2. Infinite Horizon Results
In the infinite horizon, if the market is either shrink-
ing or growing, then there is transience toward zero
or infinity, respectively. We therefore assume no exter-
nal advertising is possible. Define the functions

zf �*�= argmax
0≤z≤1

�L̃�z�−!*S�z�� (20)

and
�f �*�= argmax

0≤�≤1
�−C���+!*��$ (21)

In what follows, * will equal the value difference
between a committed and a latent customer and zf �*�
and �f �*�will be the optimal controls given this value
difference. Note that z∗my = zf �0�. From the concavity
of −S�z� and L̃�z�, for *≥ 0,

zf �*�= 1− h

r̃ +!��*+h
$

5 In an extension, Fergani (1976) considers external advertising to
“replenish” the market.
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Thus, zf �*� is increasing in *. Further, �f �0�= 0 and,
for *> 0,

�f �*�=min�C ′−1�!*�
1�$

Note that �f �*� is nondecreasing in *. The solution
to this equation is unique because C�·� is increasing
and strictly convex.
Define

*max =
p2L̃�z

∗
my�+ rp1

1−!



zmax = 1− h

r̃ +!*max�+h



�max =min�C
′−1�!*max�
1�$

These variables will be shown in the following lemma
to indeed be upper bounds on their respective modi-
fiers under the following assumption:

Assumption 7. 1− p2S�z
∗
my�−�max ≥ 0.

This is a flow assumption, similar in nature to (15),
to guarantee nonnegativity of the value difference *.
Because h > 0, this assumption implies that �max < 1
and, hence, �max = C

′−1�!*max�. The following fixed
point lemma will aid in the infinite horizon proof.

Lemma 1. Define the mapping

T �*� = p2L̃�zf �*��−!*p2S�zf �*��+ rp1+!*

+C��f �*��−!*�f �*�$

Under Assumption 7, there is a unique fixed point *∗

such that
*∗ = T �*∗�
 (22)

where *∗ ∈ 0
*max�. Further, for any * ∈ 0
*max�,

z∗my ≤ zf �*�≤ zmax and 0≤ �f �*�≤ �max$

The proof of Lemma 1 (found in the online ap-
pendix) follows from basic calculus and showing that
T �·� is a contraction mapping. Let / be the set of
admissible policies. Define

V ∗�x
 �
��= sup
0∈/

�∑
t=1

!t−1L�zt
�t
 �t
�t�


where we redefine L�z
�
�
��
*= L�z
�
 ·
 �
��. Then,

V ∗�x
 �
�� is the optimal discounted expected rev-
enue function for the infinite horizon problem with
initial state equal to (x
�
�). We have the following
result:

Theorem 2. Assume Assumptions 1–3 and 7. Define

a= �p2�L̃�zf �*
∗��−!*∗S�zf �*

∗���+ rp1�/�1−!�
 (23)

b= �−C��f �*∗��+!*∗�f �*
∗��/�1−!�
 (24)

c= p3�L̃�zf �*
∗��−!*∗S�zf �*

∗���/�1−!�
 (25)

where *∗ is from Equation �22�. Then, *∗ = a− b and a
and b simultaneously solve

a= p2 max
z≥0

�L̃�z�−!S�z��a− b��+ rp1+!a
 (26)

b=max
0≤�≤1

�−C���+!��a− b��+!b$ (27)

Further, for x≤ yf �zf �*
∗�
 ��,

V ∗�x
 �
��= a�+ b�+ c


and zf �*∗� and �f �*∗� are an optimal stationary policy.

The proof (found in the appendix) follows by show-
ing that a� + b� + c satisfies the Bellman equation
for V ∗. We can offer some comparative statics for
these optimality results:

Proposition 1. The optimal “value increment” *∗

increases in r �if p1 ≥ p2�, −h, −�, −�, and !. The optimal
stocking level zf �*∗� increases with r
*∗, and −h. When
��*∗ ≥ r�1−��, the optimal stocking level increases in !.
The optimal incentive �f �*∗� increases with increasing *∗,
r , −h, −�, −�, and !.
This result states that the value increment of a com-

mitted customer over a latent customer increases with
the retail price and the discount factor. The former
is obvious as committed customers will pay more
when their demand is realized and satisfied. The latter
arises because it lessens the effect of a defecting cus-
tomer who has a chance of returning to the commit-
ted pool in the following period. The value increment
will also increase (1) when the holding cost decreases
because it lessens the cost of servicing a commit-
ted customer, and (2) when either � or � decreases
because these govern the proportion of dissatisfied
customers who leave the committed market. The opti-
mal stocking level increases with an increase in the
retail price or a decrease in the holding cost, because
these changes indicate that a greater level of inven-
tory service is economically warranted. The optimal
stocking level increases with the optimal value incre-
ment because this represents preserving committed
customers over losing them. The optimal incentive
level increases by the same reasoning. In other words,
a greater value increment, higher price, lower holding
cost, and a smaller proportion of leaving customers
are all reasons for the firm to spend more to convert
a latent customer to a committed one.
The proof of these comparative statics follows from

a standard application of the implicit function the-
orem and may be found in the online appendix.
The observations following Theorem 1 for the finite
horizon model carry over to the infinite horizon.
Moreover, a specific value for the “equivalent” unit
stockout cost in a traditional inventory model is
found to be

unit stockout cost= !���a− b�= !��*∗$
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The interpretation of this unit stockout cost is that
it represents the value lost due to a stockout. It is
discounted by ! because the leaving customers will
join the latent market in the following period. The
parameters �� represent the expected proportion of
stocked-out customers who will leave, and (a− b) is
the expected lost (lifetime) value of the customers
leaving the committed market for the latent market in
the following period.

3. The Duopoly Model
In this section, we provide a competitive frame-
work where two firms explicitly compete with each
other for the retention of customers on the basis of
their inventory performance. The “committed” mar-
ket for one firm is now the “potential” market of
the other firm. That is, when customers stock out
at firm 1, they may join firm 2’s market and vice
versa. There is no external (outside the duopoly)
advertising. Thus, the potential market has replaced
both the latent and external markets of the previous
section. This duopoly arrangement may be seen in
Figure 1(b).
We first prove results for a duopoly where each

firm makes a stocking decision only. We then extend
the basic model to a model with incentive decisions
as well as inventory stocking decisions. We define
some commonalities shared by the two models before
examining each separately. Though we only consider
duopolies, the results would likely extend to oligolop-
ies as well. However, one would need to carefully
define and justify the flows of dissatisfied customers
between firms. For the model with stocking decisions
only, the separability that occurs would make this rel-
atively straightforward; however, for the model where
the flows depend on explicit decisions, much more
care would be needed.
Much of the nomenclature is identical or analogous

to the single-firm model, with the difference being a
superscript identifying the firm. We will not redefine
such notation if we believe its definition to be self-
explanatory.
We have four state variables (x1t 
 x

2
t 
 �

1
t 
 �

2
t ), where

xit is firm i’s inventory (or backlog) level at the
beginning of period t and �it is the size of firm i’s
committed customer pool. We reserve indices i and j
throughout to denote the two firms, where the use
of both implies j �= i. Let us first define the transition
functions for each firm i:

xit+1 = yit −Di��it�+ � i
t �D

i
t��

i
t�− yit�

+
 (28)

�it+1 = �it −�
ij
t �

i
t �D

i
t��

i
t�− yit�

+

+�
ji
t �

j
t �D

j
t ��

j
t �− y

j
t �

+
 (29)

where �ij
t is the proportion of unsatisfied firm i cus-

tomers that defect to firm j in the following period.
Throughout this section, we assume the following.

Assumption 8. For period t, i= 1
2, Di
t��

i
t�= pi1�

i
t +

�pi2�
i
t + pi3�	

i
t , where pi1
 p

i
2
 p

i
3 ≥ 0. The sequences �	it�

and �	jt� are i.i.d., independent of each other, and follow the
same distributional assumptions as in Assumption 1.

Assumption 9. The sequences of random variables
�� i

t �, ��
j
t �, ��

ij
t �, and ��

ji
t � are i.i.d., mutually indepen-

dent, independent of all other random variables in the sys-
tem, and have means �i = E� i

t �, �
j = E� j

t �, �
ij = E�ij

t �,
and �ji = E�ji

t �, respectively.

Perform a change of variable so that

zit = y−1
f �yit
 �

i�=�i

(
yit − pi1�

i

pi2�
i + pi3

)



where �i is the c.d.f. of 	i (we use a subscript for
i on � to aid notationally when its inverse is taken).
Then, the transition functions can be rewritten as
follows:

xit+1= �pi2�
i
t+pi3���

−1
i �zit�−	it+� i

t �	
i
t−�−1

i �zit��
+�
 (30)

�it+1 = �it − �pi2�
i
t + pi3��

ij
t �

i
t �	

i
t −�−1

i �zit��
+

+ �p
j
2�

j
t + p

j
3��

ji
t �

j
t �	

j
t −�−1

j �z
j
t��

+$ (31)

For the model with no incentives, the periodic reward
for period t for firm i is

Li�yit
 �
i
t�

=−r̃ iE�Di��it�−yit�
+�−hiE�yit−Di��it��

+�+r iEDi��it��

= �pi2�
i
t + pi3�L̃

i�zit�+ r ipi1�
i
t


where

L̃i�zit�
*=−r̃ iE�	it −�−1

i �zit��
+�−hiE��−1

i �zit�− 	it�
+�$

Note that both the reward and transition functions
are affine in �it and �

j
t . The model with incentives

will have the additional advertising costs associated
with attracting the other firm’s customers in the peri-
odic reward function; these will be written sepa-
rately from L̃i�·�, which is defined as above in both
models.

3.1. Duopoly with No Consumer Incentives
In this subsection, we assume each firm chooses its
inventory levels, mindful of the potential of losing
its own customers but with no conscious effort to
attract customers from the other firm. This could be
translated as the inward-looking “operations focused”
model.
As in the single-firm model, we assume that there

is a (normalized) salvage value associated with the
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end of horizon state vector (xi
 xj
 �i
 �j ), as follows:

Assumption 10. For any xi, xj , V i
T+1�x

i
 xj
 �i
 �j�=
aiT+1�

i + biT+1�
j , where

aiT+1 =
pi2L̃

i�zi∗my�+ r ipi1

�1−!�2

 (32)

biT+1 = !aiT+1$ (33)

The intuition for this assumption is analogous to
the single-firm model.
We define V i

t �x
i
 xj
 �i
 �j� to be the discounted

expected value for firm i under a Markov equilibrium
(if it exists) from period t onward, given a current
state vector of (xi
 xj
 �i
 �j ). Whereas this value will
depend on the specific equilibrium chosen, we show
that there is, in fact, a unique Markov equilibrium in
each period and, hence, there is no ambiguity in the
expression. Further, we assume that:

Assumption 11. Assume

1− pi2�
ij�iE�	i −�−1

i �zi∗my��
+�

− p
j
2�

ji�jE�	j −�−1
j �zj∗my��

+�≥ 0$
This condition, which ensures that we would prefer

to keep customers rather than lose them to the com-
petitor (see the proof of Theorem 3), has strong analo-
gies to Assumption 6. It is also effectively the same as
Condition 3 in Liu et al. (2007). Indeed, the assump-
tions of this section are effectively equivalent to those
of Liu et al. (2007) except that we allow inventory (or
backlogs) to be carried between periods (which is the
significant contribution of the section), which in turn
necessitates an assumption on the salvage value. As
stated before, such an assumption becomes decreas-
ingly important as one moves further from the end of
the horizon and is not needed in the infinite horizon.

Theorem 3. Recursively define

zi∗t = argmax
0≤zi≤1

�L̃i�zi�−!�ait+1− bit+1�S
i�zi��
 (34)

ait=pi2L̃
i�zi∗t �−!pi2�a

i
t+1−bit+1�S

i�zi∗t �+r ipi1+!ait+1
 (35)

bit = !p
j
2�a

i
t+1− bit+1�S

j �z
j∗
t �+!bit+1
 (36)

cit = pi3L̃
i�zi∗t �−!pi3�a

i
t+1− bit+1�S

i�zi∗t �

+!p
j
3�a

i
t+1− bit+1�S

j �z
j∗
t �+!cit+1$ (37)

Then, under Assumptions 8–11 for xi1 ≤ yif �z
i∗
1 
 �

i� and
x
j
1 ≤ y

j

f �z
j∗
1 
 �

j�, the unique Markov perfect equilibrium pol-
icy is for the firms to order-up-to �yif �z

i∗
t 
 �

i�
 y
j

f �z
j∗
t 
 �

j ��
and this policy has value V i

t �x
i
 xj
 �i
 �j�= ait�

i+bit�
j+cit .

Further, zi∗t , a
i
t , b

i
t , and a

i
t − bit are nondecreasing in t with

ait − bit ≥ 0.

Thus, so long as the inventory in the first period
(only) is below the desired levels, there is an equi-
librium in base-stock policies. As in the single-firm
model, it is likely that one does not actually need
to restrict first-period inventory, but the proof would
become more involved because a bounding argument
on V i

t �·� is no longer sufficient.
The value function V i

t �·� represents firm i’s
expected present value of the current and future
rewards under the (unique) pure strategy Markov
equilibrium given the current state. As is well-known,
a Markov equilibrium is a subgame perfect Nash
equilibrium in a finite horizon. In this particular
model, due to Assumptions 8–11, we gain additive
separability of each firm’s value function into com-
ponents dependent upon the market size state vari-
ables and independent of the beginning inventory
state variables. We speculate the primary reason for
the separability is that defecting customers do not
search at the other retailer in the same period but join
the competitor’s market and may be served in the
following period at the soonest. This assumption and
resultant separability is also seen in Hall and Porteus
(2000) and Liu et al. (2007).
Given the above separability, the Markov game

effectively becomes two parallel Markov decision pro-
cess models, where each firm can choose its inventory
independent of the other firm’s choices. As such, the
solution to the infinite horizon model is well-defined
and stationary. Further, one could use machinery sim-
ilar to that of Theorem 2 to find the (unique) infinite
horizon stationary values, where the stationary flow
from the competitor pj2S

j�zj∗� would replace the sta-
tionary flow decision �f �*

∗�. We do not do so here
in the interest of space. In this case, we are able to
observe an “equivalent” unit stockout cost similar to
the single-firm model. For firm i, it is

unit stockout cost= !�ij�i�ai − bi�= !�ij�i*i∗$

3.2. Duopoly with Incentives for
Dissatisfied Consumers

We now suppose that the firm may attract dissatis-
fied customers from the competition. That is, firm i
may influence the mean (�ji) of the flow from firm j
to firm i. We assume that there is a convex increas-
ing advertising cost for firm i to attract an expected
proportion �ji of firm j’s dissatisfied customers. We
intend this advertising effort to be directed toward all
the customers of the competitor, but only the dissat-
isfied customers will be significantly affected by the
message. Further, we assume that this cost may be
written as �pj2�

j
t + p

j
3�Ai��

ji�. As such, it is assumed to
contain a term that is proportional to �j and a fur-
ther term that is independent of �j , where the ratio
between these terms is fixed. If pj3 = 0 (i.e., multiplica-
tive demand), then this assumption simply implies
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that the advertising cost must be proportional to the
competitor’s market size.
For notational convenience, we will suppress

explicit dependence of �ij
t on the control �ij , but such

dependence should be understood in the following.
Further, the distributional assumptions of Assump-
tion 9 continue to hold, where the �ij

t are identically
distributed conditional on having the same control �ij

applied. The periodic reward will be as before with
this additional incentive cost, as follows:

�pi2�
i
t + pi3�L̃

i�zit�+ r ipi1�
i
t − �

j
t �p

j
2�

j
t + p

j
3�A

i��ji�$

Define
S̃i�z�= �iE�	i −�−1

i �z��+�$ (38)

Then,

E�it+1�= �it�1− pi2�
ij
t S̃

i�zi��+ �
j
tp

j
2�

ji
t S̃

j �zj �$ (39)

As in the single-firm model, *i will represent the
value difference between a committed (firm i) and
potential (firm j) customer. We define the vector �=
�*1
*2�. Further, define

zif ���= 1− hi

r̃ i +!*i�
ij

f ����
i +hi


 (40)

�
ij

f ���=min�A
′−1
j �!*j S̃i�zif �����
1�$ (41)

Analogous the single-firm model, zif ��� and �
ij

f ���
will represent equilibrium responses given customer
value differences of �. Note that in contrast to the
duopoly with inventory decisions only, here the deci-
sions of the two firms truly represent an equilib-
rium decision. As such, we need to show that these
responses are well-defined. This is done in the follow-
ing lemma.

Lemma 2. For any positive pair �= �*1
*2�, there is
a unique solution to Equations �40� and �41�.

The proof of Lemma 2 follows by showing that the
response functions have opposite signs and can be
found in the online appendix. Define the mapping

T i��� = pi2�L̃
i�zif ����−!*i�

ij

f ���S̃
i�zif �����+r ipi1+!*i

+p
j
2�A

i��
ji

f ����−!*i�
ji

f ���S̃
j �z

j

f �����$ (42)

Then, it will be shown that a fixed point solution
such that *1 = T 1��� and *2 = T 2��� will be such that
*1 = a1− b1 and *2 = a2 − b2 in the infinite horizon
equilibrium. The following lemma establishes prelim-
inaries for the existence of such a fixed point. Its proof
is primarily algebraic and may be found in the online
appendix.

Lemma 3. Define

*i
max =

pi2L̃
i�zimy�+ r ipi1

1−!



�ijmax =min�A
′−1
j �!*j

maxS̃
i�zimy��
1�


zimy = 1− hi

r̃ i +hi

 zimax = 1− hi

r̃ i +!*i
max�

i +hi

If 1− pi2�
ij
maxS̃i�zimy�− p

j
2�

ji
maxS̃j �z

j
my�≥ 0 then let

*i
min =

pi2L̃
i�zimy�+ r ipi1

1−!�1− pi2�
ij
maxS̃i�zimy�− p

j
2�

ji
maxS̃j �z

j
my��




else let *i
min = 0. Finally, let

�
ij
min =min�A

′−1
j �!*

j
minS̃

i�zimax��
1�$

Then, if �*i
*j� is a fixed point of T i�·�, T j�·�, then
*i ∈ *i

min
*
i
max� and *j ∈ *

j
min
*

j
max�. Further, for any

*i ∈ *i
min
*

i
max� and *

j ∈ *j
min
*

j
max�,

zimy ≤ zif ���≤ zimax and �
ij
min ≤ �

ij

f ���≤ �ijmax$

To show there is a unique fixed point, we need to
show that ��4/4*j�T i���� < 1. A relatively strong set
of assumptions that implies this follows:

Assumption 12. Assume

p
j
2
*i
max

*
j
min

≤ 2
 *i
min

*
j
max

≥ 1
2
pi2


pi2*
i
max < min

�
ij
min≤�≤�

ij
max

A′′
j ���$

Further, for all z, assume

�i�z�
��i�z�

≥ 1$

These assumptions say that the ranges of the *i, *j

cannot be too far apart, that the second derivative of
the cost function is sufficiently large relative to *i,
and that the hazard rate of 	i, �i�z�/��i�z�, is at least
one. These assumptions are driven by the algebra
and unfortunately do not appear particularly intu-
itive. A weaker but somewhat more obscure assump-
tion that can easily be shown to be implied by
these assumptions is given as Assumption 13 in the
appendix.

Lemma 4. Under Assumption 12 or 13, the map-
pings T i���, T j��� have a unique fixed point.
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Let �∗ be the unique fixed point of the map-
pings T i���, T j���. Define

ai = pi2
(
L̃i�zif ��

∗��−!*∗i�ijf ��
∗�S̃i�zif ��

∗��
)+ r ipi1

1−!

bi = p
j
2�!*

∗i�jif ��
∗�S̃j �zjf ��

∗��−Ai��
ji

f ��
∗���

1−!

ci = 1
1−!

(
pi3�L̃

i�zif ��
∗��−!*∗i�ijf ��

∗�S̃i�zif ��
∗���

+ p
j
3�!*

∗i�jif ��
∗�S̃j �zjf ��

∗��−Ai��
ji

f ��
∗���

)
$

so that *∗i = ai − bi.
We are now ready to establish our main result,

which shows that there is an equilibrium in stationary
state-independent policies in the infinite horizon dis-
counted game. An equilibrium in stationary policies
is weaker than the Markov equilibrium of the previ-
ous section. It is one where all firms precommit to a
fixed policy for the infinite horizon and then a one-
shot game is played on the policy space. Such an equi-
librium is not guaranteed to be subgame perfect (and
is likely not). This is the same type of equilibrium
used in most inventory games considered over the
infinite horizon (e.g., Avsar and Baykal-Gürsoy 2002,
Bernstein and Federgruen 2004, Cachon and Zipkin
1999) and it appears that a stronger result must await
theory development in Markov games.
For the inventory game considered here, we must

define what it means to follow a state-independent
inventory policy. For ease of exposition, we assume
that the firm may costlessly reduce down to the
desired inventory level. However, we will also show
that, operating under the equilibrium policy, the
inventory level is never above the desired level and
so this (somewhat unrealistic) option is never actu-
ally used. One could more realistically assume that
the firm simply orders nothing and allows demand to
draw down inventory if the firm finds itself above the
stationary level, but (because this still never occurs)
this complicates the proof with little extra value
added.

Theorem 4. Under Assumptions 8, 9, and 12 or 13,
�zif ��

∗�
 zjf ��
∗�
�ijf ��

∗�
�jif ��
∗�� form an equilibrium in

state-independent stationary policies in the infinite hori-
zon discounted game. The expected discounted payoff
function for firm i under this equilibrium for starting
state �xi
 xj
 �i
 �j� with xi ≤ yif �z

i
f ��

∗�
 �i� and xj ≤
y
j

f �z
j

f ��
∗�
 �j� equals ai�i + bi�j + ci.

We have the following comparative statics for the
equilibrium that, similar to Proposition 1, are proven
in the online appendix using the implicit function the-
orem on the mapping T i�·�. The sufficient condition
used in this proposition will be shown to be quite
weak in the associated proof.

Proposition 2. When S̃j �z
j

f ���� − *i4S̃j �z
j

f ����/
4*i ≥ 0, (a) firm i’s �i �= j� equilibrium “value increment”
*i∗ increases in r i �when pi1 ≥ pi2�, r

j , −hi, −hj , and −�i;
(b) firm i’s �i �= j� equilibrium stocking level increases in
r i, r j , −hi, and −hj ; and (c) firm i’s �i �= j� equilibrium
incentive level increases in r i, r j , −hi, −hj , and −�i.

This result establishes that a firm’s valuation of one
of its committed customers over the valuation of its
potential customer, its equilibrium stocking level, and
its equilibrium incentive level increase when either
firm’s retail price increases or either firm’s holding
cost decreases. The reasons for its own retail price
and holding cost are straightforward. The reason for
these changes in the other firm’s retail price and hold-
ing cost is simply that the other firm will increase its
value increment and stocking level and the original
firm will, too, in response.
Our incentives are targeted toward dissatisfied cus-

tomers from the competitor’s market. Because both
retailers can retain their own customers by perform-
ing well with their inventory decisions and limiting
the number of stockouts as far as is economically sen-
sible, the inventory decision is partly an incentive in
itself. In research not reported here, we considered a
model where one firm can directly attract any of the
competitor’s customers. Unfortunately, we found that
the conditions needed to show base-stock equilibrium
policies (the focus of this paper) are too restrictive to
make the model of general interest. It may also be
possible for the firm to work to retain its own dissatis-
fied customers (other than with available inventory).
In that case, the interaction between the firm’s actions
and its competitor’s actions would need to be care-
fully delineated. Future work should investigate such
competitive models.

4. Conclusions and Extensions
Consumers in classical dynamic inventory models
are assumed to be backlogged (most common), lost
(next most common), partially backlogged and par-
tially lost (relatively uncommon), or gone from the
market thereby reducing future demand (rare). In
the first three cases, the firm’s economic burden
from not satisfying customers is usually approxi-
mated using a simple unit stockout cost. Although
there has been widespread agreement that one (sig-
nificant) element of the unit stockout cost is to reflect
the economic consequences of some of these dissatis-
fied customers leaving the firm’s market (thus reduc-
ing future demand), there has been little research
investigating how this phenomenon affects the opti-
mal (or equilibrium) inventory policy. Notable excep-
tions to this statement include Fergani (1976), Hall
and Porteus (2000), and Liu et al. (2007). In addition
to explicitly modeling the effect of future stockouts
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on demand, we explicitly incorporate the three previ-
ously mentioned stockout alternatives (in contrast to
Hall and Porteus 2000 and Liu et al. 2007), we include
the possibility of consumer forgiveness (in contrast
to Fergani 1976), and we consider the possibility of
attracting new customers.
We first consider a single firm. This firm could

be considered as one firm operating under perfect
competition, a price-taking monopolist, or simply one
where pricing decisions are made by separate deci-
sion makers on a longer time frame. Each firm decides
stocking levels, the proportion of “latent” customers
that can be convinced to become “committed,” and
the extent of external advertising to increase the com-
mitted pool of customers. We establish sufficient con-
ditions under which the optimal inventory policy is
base-stock for the finite and infinite time horizons.
Although we do not consider the conditions stren-
uous, they do suggest that the unit stockout cost
may not be a good proxy under all circumstances.
When the conditions are supported, we find a closed-
form solution for the unit stockout cost, represent-
ing the discounted lost value premium of those lost
customers. In addition, we find “lifetime” values of
committed and latent customers. The optimal base-
stock level increases with the retail price, the propor-
tion of nonbacklogging customers who leave, and the
value premium the committed customers have over
the latent customers; it decreases with the unit hold-
ing cost and proportion of stocked-out customers who
wish to backlog.
The natural extension to the single-firm model is a

duopoly where a customer leaving one firm’s market
joins the other firm’s market and vice versa. In the
initial duopoly, firms decide only upon inventory lev-
els and conditions are found under which the firms
will operate under a base-stock equilibrium policy.
Due primarily to the fact that a leaving customer will
join the other firm’s market but not search within the
same time period, the equilibrium separates in every
period. In the subsequent duopoly model, an incen-
tive decision is included with the inventory decision.
The incentive decision is advertising targeted toward
the other firm’s dissatisfied customers. We establish
conditions under which a base-stock inventory policy
is an equilibrium in stationary policies.
As mentioned in §2, we assume the firms actually

know the market sizes, whereas in reality they may
only have estimates. A model with Bayesian updat-
ing such as that in Fergani (1976) could likely be
used to accommodate this uncertainty and is an inter-
esting topic for future research. It is also possible
to describe each market as a vector where each ele-
ment represents the number of consumers who have
been in the market for a particular number of peri-
ods, and the sum of the elements is the total market

size. Unfortunately, for our method of analysis to be
sustained, overly restrictive assumptions are needed
so that this extension was not pursued further and
a more general model (with a different type of anal-
ysis) is left as the subject of future research. Finally,
we assume that lead times are zero. As nonzero lead
times with lost sales assumptions typically present
a challenging problem, it is likely that incorporat-
ing lead time in our models will present similar
challenges.

5. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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Appendix
Proof of Theorem 1. The proof is inductive and we

establish the basis in the online appendix. For period t, 1≤
t ≤ T − 1, assume:
• Vt+1�x
 �
�� = at+1� + bt+1� + ct+1 for x ≤ yf �z

∗
t+1
 ��

and is bounded above by Vt+1�yf �z∗t+1
 ��
 �
�� for x >
yf �z

∗
t+1
 ��;

• z∗my ≤ z∗t+1, 0 ≤ at+1 − bt+1 ≤ at+2 − bt+2, at+1 ≤ at+2, and
bt+1 ≤ bt+2.
For zt ≤ z∗t+1, xt+1 ≤ yf �z

∗
t+1
 �t+1� by the following reason-

ing. Observe

xt+1 = �p2�t + p3���
−1�zt�− 	t + �t�	t −�−1�zt��

+�$

If �	t − �−1�zt��+ = 0, then there were no dissatisfied
customers so that �t+1 ≥ �t and therefore xt+1 ≤ �p2�t + p3� ·
�−1�zt� ≤ �p2�t+1 + p3��

−1�zt� ≤ �p2�t+1 + p3��
−1�z∗t+1� ≤

yf �z
∗
t+1
 �t+1�. For the case where �	t −�−1�zt��+ > 0,

xt+1 < 0 ≤ yf �z
∗
t+1
 �t+1�. Therefore, for zt ≤ z∗t+1,

EVt+1�xt+1
 �t+1
�t+1�= at+1E�t+1+ bt+1E�t+1+ ct+1.
For zt > z∗t+1,

EVt+1�xt+1
 �t+1
�t+1�

≤ at+1E�t+1+ bt+1E�t+1+ ct+1

= at+1��t − �p2�t + p3�S�zt�+�t�t + �t�

+ bt+1��1−�t��t + �p2�t + p3�S�zt��+ ct+1

= at+1�t − �p2�t + p3�S�zt��at+1− bt+1�

+�t��t�at+1− bt+1�+ bt+1�+ at+1�t + ct+1$ (43)
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Define ft�z�
*= L̃�z�−!S�z��at+1− bt+1�. We will show that

z∗t = argmaxz ft�z�. Note that in this case, by the concavity
of −S�z�, z∗t ≥ z∗my . Now,

�p2�t + p3�L̃�zt�+!EVt+1�xt+1
 �t+1
�t+1�

≤ �p2�t + p3�ft�zt�+!�t��t�at+1− bt+1�+ bt+1�

+!at+1��t + �t�+!ct+1$

By the concavity of −S�z� and L̃�z� and the nonde-
creasing nature of at − bt (by the induction assumption),
argmaxz ft�z� ≤ argmaxz ft+1�z� = z∗t+1. Therefore, by the
concavity of ft�·�, ft�zt�≤ ft�z

∗
t+1� for zt > z∗t+1. Consequently,

we can exclude consideration of zt > z∗t+1. Therefore,

Vt�x
�
��

= max
z∗t+1≥z≥y−1�x
��
0≤�≤1
 �≥0

�p2�+ p3�L̃�z�+ rp1�−C����−K���

+!at+1E�t+1�+!bt+1E�t+1�+!ct+1�


where y−1�x
 ��=���x−p1��/�p2�+p3��. Applying the same
logic as in (43),

Vt�x
�
�� = �p2�+ p3� max
z≥y−1�x
��

ft�z�+ ��rp1+!at+1�

+�max
0≤�≤1

�−C���+!���at+1− bt+1�+ bt+1��

+!ct+1+max
�≥0

�!at+1�−K����= at�+ bt�+ ct

for x ≤ yf �z
∗
t 
 ��, where at , bt , and ct are as defined in

Equations (17)–(19). Because z∗t+1 = argmaxz�L̃�z� − !S�z� ·
�at+2 − bt+2��, z∗t+1 ≥ z∗t through the induction assumption
(at+2−bt+2 ≥ at+1−bt+1) and again by the concavity of −S�z�.
Now,

at = p2 max
z

ft�z�+!at+1+ rp1

= p2�L̃�z
∗
t �−!S�z∗t ��at+1− bt+1��+!at+1+ rp1


which is increasing in t because �1− S�z��≥ 0 for all z and
(at+1− bt+1) is also increasing in t. Also,

bt = max
�

�−C���+!��at+1− bt+1��+!bt+1

= −C��∗
t �+!�∗

t �at+1− bt+1�+!bt+1


which is also increasing along similar reasoning to at . Now,

�∗
t = argmax

�

�−C���+!��at+1− bt+1��

so �∗
t ≤ �∗

t+1 from the induction assumption. Further,

at−bt

=p2L̃�z
∗
t �+rp1+C��∗

t �+!�at+1−bt+1��1−�∗
t −p2S�z

∗
t ��

≤p2L̃�z
∗
t �+rp1+C��∗

t+1�+!�at+1−bt+1��1−�∗
t+1−p2S�z

∗
t ��

≤p2L̃�z
∗
t �+rp1+C��∗

t+1�+!�at+2−bt+2��1−�∗
t+1−p2S�z

∗
t ��

≤p2L̃�z
∗
t+1�+rp1+C��∗

t+1�+!�at+2−bt+2��1−�∗
t+1−p2S�z

∗
t+1��

=at+1−bt+1


where the first inequality is due to the optimality of �∗
t , the

second inequality is because at+1−bt+1 ≤ at+2−bt+2, and the
third is by definition of z∗t+1. Finally, at−bt ≥ 0 because at+1−
bt+1 ≥ 0 and 1−�∗

t − p2S�z
∗
t �≥ 1−�∗

T − p2S�z
∗
my�≥ 0. �

Proof of Theorem 2. By definition, a and b simultane-
ously solve

a= p2 max
z
�L̃�z�−!S�z��a− b��+!a+ rp1
 (44)

b=max
0≤�≤1

�−C���+!��a− b��+!b$ (45)

Let 	, � , and � be some random realization of demand, non-
backlogging proportions, and leaving proportions, respec-
tively. Define X�z�=�−1�z�−	+��	−�−1�z��+ and Y �z�=
���	−�−1�z��+. From Theorem 4.2.3 in Hernández-Lerma
and Lasserre (1996), the optimal stationary solution must
satisfy

V ∗�x
 �
�� = max
z≥y−1�x
��
0≤�≤1

(
�p2�+ p3�L̃�z�+ rp1�−C����

+!EV ∗�yf �X�z�
 ��
 ��1−Y �z��

+R����
 �1−R�����+Y �z����
)
$

We first consider the relaxed problem where there is no
lower bound on z. Substituting �V ∗�x
 �
�� = a� + b� + c
into the right-hand side of the relaxed version of the above
equation yields

max
z
0≤�≤1

(
�p2�+ p3�L̃�z�+ rp1�−C����

+!�a���1− S�z��+���+ b��1−���+ S�z���+ c�
)

= �p2�+ p3�max
z
�L̃�z�−!�a− b�S�z��+ ��rp1+!a�

+�max
0≤�≤1

�−C���+!�a− b��+!b�+!c

= �a+�b+ c$

Therefore, the optimal stationary policy for the relaxed
problem is (zf �*∗�
�f �*∗�). If this solution is also feasible
for the original problem, then it must also be optimal for
the original problem. Let z∗ = zf �*

∗�. This policy is feasible
if future inventory is less than or equal to the desired future
order-up-to point. Now, future inventory equals (p2�+ p3� ·
��−1�z∗�−	+��	−�−1�z∗��+) and the future desired order-
up-to point equals

yf �z
∗
��1−Y �z∗��+R�����=p1���1−Y�z∗��+R�����+�−1�z∗�

· �p2���1−Y �z∗��+R�����+ p3�$

If 	 ≤ �−1�z∗� so that there are no unsatisfied customers,
then Y �z�= 0, and using the fact that demand must be non-
negative, the future desired order-up-to point is bounded
below by

p1�+ �p2�+ p3��
−1�z∗�≥ �p2�+ p3���

−1�z∗�− 	�


where the right-hand side equals future inventory (in this
case). If 	 > �−1�z∗�, then future inventory is negative but,
again using nonnegativity of demand, the future desired
order-up-to point is nonnegative. Thus, in both cases, future
inventory is at most the future desired order-up-to point
and z∗ is indeed feasible. Hence, (zf �*∗�
�f �*∗�) is the opti-
mal stationary policy. �
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Alternate (Weaker) Assumption to Assumption 12
A weaker assumption to Assumption 12 (which can easily
be shown to be implied by Assumption 12) is as follows:

Assumption 13. For all *i ∈ *i
min
*

i
max� and *j ∈

*
j
min
*

j
max�,

∣∣∣∣
−!2pi2*iS̃i�zif ����

2�i�z
i
f �����g

i�*i
�
ij
f �����

2

ni���

+ !2p
j
2h

j*i��j �2��
ji
f ����

2 Pr�	j > z
j
f ����A

′′
i ��

ji
f ����

nj ���

∣∣∣∣< 1


where ni��� = A′′
j ��

ij
f �����i�z

i
f �����g

i�*i
�
ij
f �����

2 + hi!2*i ·
*j��i�2 Pr�	i > zif ���� and g

i�*i
�ij �= r̃ i +!*i�ij�i +hi.

The assumption arises from the need for ��4/4*j�T i����< 1
and the expression on the left will be shown to be
��4/4*j�T i���� (see Lemma 5 in the online appendix).
Proof of Theorem 4. Let �∗ be the unique fixed point

of the mappings T i���, T j��� (which exists by the given
assumptions and Lemma 4). Further, for any x, define the
function

V i�x
�i
 �j �= ai�i + bi�j + ci$

To show that (zif ��
∗�
 zjf ��

∗�
�ijf ��
∗�
�jif ��

∗�) form an
equilibrium in stationary policies in the infinite horizon dis-
counted game, we must show that

V i�xi
 xj
 �i
 �j � = eqm
z≥0

0≤�ji≤1

[
�pi2�

i + pi3�L̃
i�z�− �p

j
2�

j + p
j
3�A

i��ji�

+ r ipi1�
i +!EV i�xit+1
x

j
t+1
 �

i
t+1
 �

j
t+1��

]



where z is unrestricted due to our assumption that inven-
tory may be drawn down costlessly. Further, we must show
that for xi ≤ yif �z

i
f ��

∗�
 �i� and xj ≤ y
j
f �z

j
f ��

∗�
 �j �, xit+1 ≤ yif ·
�zif ��

∗�
 �it+1� and x
j
t+1 ≤ y

j
f �z

j
f ��

∗�
 �jt+1�.
We begin with the final point, which implies that a sta-

tionary state-independent order-up-to policy is feasible for
the system where inventory may not be removed costlessly.
Pick 0≤ z≤ 1. For zit ≤ z, xit+1 ≤ yif �z
 �

i
t+1� (and, hence, z is

also feasible in the following period) due to the following
reasoning. We have that

xit+1 = �pi2�
i
t + pi3���

−1
i �zit�− 	it + � i

t �	
i
t −�−1

i �zit��
+�

and
yif �z
 �

i
t+1�= pi1�

i
t+1+�−1

i �z��pi2�
i
t+1+ pi3�$

If 	it ≤ �−1
i �z� so there are no unsatisfied customers, then

�it+1 ≥ �it and, using the fact that demand must be non-
negative, the future desired order-up-to point yif �z
 �

i
t+1� is

bounded below by

pi1�
i
t +�−1

i �zit��p
i
2�

i
t + pi3�≥ �pi2�

i
t + pi3���

−1
i �zit�− 	it�


where the right-hand side equals future inventory xit+1 (in
this case). If 	it > �−1

i �z�, then future inventory xit+1 is neg-
ative but, again using nonnegativity of demand, the future
desired order-up-to point yif �z

i
f ��

∗�
 �it+1� is nonnegative.
Thus, in both cases, xit+1 ≤ yif �z
 �

i
t+1�.

Now,

aiE�it+1+ biE�jt+1

= ai��i − �pi2�
i + pi3��

ij S̃i�zi�+ �p
j
2�

j + p
j
3��

jiS̃j �zj ��

+ bi��j − �p
j
2�

j + p
j
3��

jiS̃j �zj �+ �pi2�
i + pi3��

ij S̃i�zi��$ (46)

Fixing the opponents strategy at (zj
�ij ),

max
z≥y−1i �xi
 �i�

0≤�ji≤1

[
�pi2�

i + pi3�L̃
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j
2�

j + p
j
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i��ji�+ r ipi1�
i

+!EV i�xit+1
x
j
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 �

i
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 �

j
t+1��

]
= �pi2�

i + pi3� max
z≥y−1i �xi
�i�

L̃i�z�−!�ij S̃i�zi�*i∗�+ �i�r ipi1+!ai�

+ �p
j
2�

j + p
j
3� max
0≤�ji≤1

−Ai��ji�+!�jiS̃j �zj �*i∗�+!�jbi +!ci

= �pi2�
i+pi3� max

z≥y−1i �xi
�i�
Mi�z
�ij �+�i�r ipi1+!ai�+�p

j
2�

j+p
j
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· max
0≤�ji≤1

Bi��ji
 zj �+ �j!bi +!ci


where Mi�z
�ij �
*= L̃i�z� − !�ij S̃i�z�*i∗ and Bi��ji
 zj �

*=
−Ai��ji�+!�jiS̃j �zj �*i∗. However,

zif ��
∗� = argmax

z≥w
Mi�z
�

ij
f ��

∗�� for w ≤ y−1
i �xi
 �i� and

�
ji
f ��

∗� = argmax
0≤�ji≤1

Bi��ji
 z
j
f ��

∗��$

Therefore, (zif ��
∗�
�jif ��

∗�) is an optimal response to
(zjf ��

∗�
�ijf ��
∗�). �
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