
e-companion to Olsen and Parker: On Markov Equilibria in Dynamic Inventory Competition ec1

Online Appendix to

“On Markov Equilibria in Dynamic Inventory Competition”

Tava Lennon Olsen

The University of Auckland Business School

Auckland 1142, NZ

t.olsen@auckland.ac.nz

Rodney P. Parker

The University of Chicago Booth School of Business

Chicago, IL 60637

rodney.parker@chicagobooth.edu

Appendix EC.1: Basestock Equilibrium

Theorem EC.1 below shows that a basestock policy is an ME. However, the condition required to

prove it (Property 6) is quite strong. We first require an analog to Definition 5.

Definition EC.1 (Potential Reward for Overstocking). Let εiT+1(x) = 0 for all x ≥ 0.

Then recursively define

εit(x) =

 0 0≤ x≤ yi∗

maxz≤x

{
πi(z,Rj(z))−πi∗ +αE

[
εit+1(X

i(z,Rj(z)))
]}

x> yi∗.

Thus, εit(x) is an upper bound on the extra reward available to firm i for an overstock of x in

period t, assuming firm j reacts to that overstock according to the response function Rj(·). Note
that by definition εit(·) is nondecreasing and εit(y

i∗) = 0.

Property 6. For xi ≥min(yi∗,Ri(xj)), xj ≥min(yj∗,Rj(xi)), πi(xi, xj)+αE
[
εit+1(X

i(xi, xj))
]
is

nonincreasing in (xi, xj). Further, πi(xi,Rj(xi))+αE
[
εit+1(X

i(xi,Rj(xi)))
]
is nonincreasing in xi.

Property 6 implies that πi(y, yj∗)+αE
[
εit+1(X

i(y, yj∗))
]
is nonincreasing in y beyond yi∗. This is

the key assumption for the SSE to remain an equilibrium: it is not worth firm i’s while to overstock

in this period purely for next period’s gain if it does not get an immediate response from firm j.

To keep basestock always a best response it has to be assumed at all xj ≥min(yj∗,Rj(xi)), as in

the actual property given above, and further the extra gain needs to be nonincreasing so that no

improvement can be made by moving off a high inventory level to an even higher level. Note that

considerable effort was applied to prove the nonincreasing nature of the functions in Property 6

under some exogenous conditions, but we found no natural conditions.
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Definition EC.2 (Residual Value). Let νi
T+1(x

i, xj) = 0 for all xi, xj ≥ 0. Then recursively
define

ν
i
t(x

i
, x

j
) =



0 0≤ xi ≤ yi∗, 0≤ xj ≤ yj∗

πi(Ri(xj), xj)−πi∗ +αE
[
νi
t+1(X(Ri(xj), xj))

]
xi ≤Ri(xj)≤ yi∗, xj > yj∗

πi(xi,Rj(xi))+αE
[
εit+1(X

i(xi,Rj(xi)))
]
+αE

[
νi
t+1(X(xi,Rj(xi)))

]
− εit(x

i)−πi∗ xi > yi∗, xj ≤Rj(xi)

πi(xi, xj) +αE
[
εit+1(X

i(xi, xj))
]
+αE

[
νi
t+1(X(xi, xj))

]
− εit(x

i)−πi∗ xi >Ri(xj), xj >Rj(xi).

We will show in Theorem EC.1 that V i
t (x

i, xj) = V i∗ + εit(x
i) + νi

t(x
i, xj) and hence νi

t(·) is the

residual value for the value-to-go function beyond V i∗ and εit(·). The solutions to the various cases

Theorem EC.1’s proof can be seen in Figure 1 from Section 2, which also correspond to the four

cases for the range in Definition EC.2.

Lemma EC.1. Under Properties 1, 2, 3, and 6, function νi
t(x

i, xj) is constant in xi for xi ≤

min(Ri(xj), yi∗), is constant in xj for xj ≤min(Rj(xi), yj∗), and is nonincreasing in both xi and

xj.

Proof The proof is by induction. Assume that νi
t+1(x

i, xj) satisfies the given properties. We

examine the properties of νi
t(x

i, xj) from its definition line by line.

Line 1 (0≤ xi ≤ yi∗, 0≤ xj ≤ yj∗): The function is trivially both constant and nonincreasing.

Line 2 (xi ≤ Ri(xj) ≤ yi∗, xj > yj∗): The function is constant in xi. For the first term, Ri(xj) is

nonincreasing in xj (Property 2(b)); hence, by Property 1 the first term is nonincreasing in xj. For

the last term, X i(Ri(yj), yj) ≤ Ri(yj) ≤ yi∗, and Xj(yj,Ri(yj)) is nondecreasing in yj (by Prop-

erty 3(c)) so by the properties of νi
t+1(·) this term must be nonincreasing in xj .

Line 3 (xi > yi∗, xj ≤Rj(xi)): The sum of the first two terms is nonincreasing in xi by Property 6.

For the third term, Xj(yj,Ri(yj)) ≤ yj (by Property 3(a)) and so Ri(Xj(yj,Ri(yj))) ≥ Ri(yj)

(by Property 2(b)), hence νi
t+1(x,X

j(yj,Ri(yj)) is constant in x for x≤min(yi∗,Ri(yj)). Further,

X i(Ri(yj), yj)≤Ri(yj)≤ yi∗, and Xj(yj,Ri(yj)) is stochastically nondecreasing in yj (by Proper-

ties 2 and 3) so by the of properties νi
t+1(·) this term must be decreasing in xj.

Line 4 (xi >Ri(xj), xj >Rj(xi)): The sum of the first and second term is nonincreasing by Prop-

erty 6. The third and fourth term follow by the properties of νi
t(·), X(·), and εit(·). Q.E.D.

Theorem EC.1. Under Properties 1, 2, 3 and Property 6, the SSE basestock policy with response

functions Ri(·) is a Markov Equilibrium with V i
t (x

i, xj) = V i∗ + εit(x
i)+ νi

t(x
i, xj).

Proof We proceed by induction. Suppose that the SSE policy is Markov from period t+1 onwards

and V i
t+1(x

i, xj) = V i∗ + εit+1(x
i)+ νi

t+1(x
i, xj). Further, suppose in period t firm j follows the SSE

basestock response policy. It suffices to show that firm i’s optimal response is the SSE basestock

response and that V i
t (x

i, xj) = V i∗ + εit(x
i)+ νi

t(x
i, xj). The following four cases correspond to the

four reference labels in Figure 1.

Case 1: 0≤ xi ≤ yi∗, 0≤ xj ≤ yj∗.

V i
t (x

i, xj) =max
y≥xi

{
πi(y, yj∗)+α

(
πi∗/(1−α)+E

[
εit+1(X

i(y, yj∗))
]
+E

[
νi
t+1(X(y, yj∗))

])}
.
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For y < yi∗, πi(y, yj∗) is increasing in y. Further, X i(y, yj∗) ≤ y < yi∗ and Xj(y, yj∗) ≤ yj∗ so the

third and fourth term are zero. Hence the equilibrium value is at least yi∗. Now, by Property 6,

πi(y, yj∗) +αE
[
εit+1(X

i(y, yj∗))
]
is maximized at y = yi∗. Further, X(y, yj∗) is stochastically non-

decreasing in y and ν(·) is a nonincreasing function, so yi∗ must be a best response and

V i
t (x

i, xj) = πi(yi∗, yj∗)+απi∗/(1−α)+ 0+0= V i∗.

Case 2: xi ≤Ri(xj)≤ yi∗, xj > yj∗.

V i
t (x

i, xj) =max
y≥xi

{
πi(y,xj)+α

(
πi∗/(1−α)+E

[
εit+1(X

i(y,xj))
]
+E

[
νi
t+1(X(y,xj))

])}
.

For y <Ri(xj), πi(y,xj) is increasing in y. Further, X i(y,xj)≤ y <Ri(xj)≤ yi∗ so the third term

is zero. For the fourth term X(y,xj) is nondecreasing in y and ν(·) is a nonincreasing function,

hence the equilibrium value is at least Ri(xj). Now, by Property 6, πi(y,xj)+αE
[
εit+1(X

i(y,xj))
]

is nonincreasing for y≥Ri(xj). As before, the last term is nonincreasing in y, so Ri(xj) must be a

best response. Further,

V i
t (x

i, xj) = πi(Ri(xj), xj)+α
(
πi∗/(1−α)+E

[
εit+1(X

i(Ri(xj), xj))
]
+E

[
νi
t+1(X(Ri(xj), xj))

])
= V i∗ −πi∗ +πi(Ri(xj), xj)+αE

[
νi
t+1(X(Ri(xj), xj))

]
= V i∗ + νt

i (x
i, xj).

Case 3: xi > yi∗, xj ≤Rj(xi).

V i
t (x

i, xj) =max
y≥xi

{
πi(y,Rj(xi))+α

(
πi∗/(1−α)+E

[
εit+1(X

i(y,Rj(xi)))
]
+E

[
νi
t+1(X(y,Rj(xi)))

])}
.

By Property 6, πi(y,Rj(xi)) +αE
[
εit+1(X

i(y,Rj(xi)))
]
is nonincreasing in y for y > xi > yi∗. But

X(y,Rj(xi)) is stochastically nondecreasing in y and ν(·) is a nonincreasing function, so xi must

be a best response. Further,

V i
t (x

i, xj) = πi(xi,Rj(xi))+α
(
πi∗/(1−α)+E

[
εit+1(X

i(xi,Rj(xi)))
]
+E

[
νi
t+1(X(xi,Rj(xi)))

])
= V i∗ −πi∗ +πi(xi,Rj(xi))+αE

[
εit+1(X

i(xi,Rj(xi)))
]
+αE

[
νi
t+1(X(xi,Rj(xi)))

]
= V i∗ + εit(x

i)+ νt
i (x

i, xj).

Case 4: xi >Ri(xj), xj >Rj(xi).

V i
t (x

i, xj) =max
y≥xi

{
πi(y,xj)+α

(
πi∗/(1−α)+E

[
εit+1(X

i(y,xj))
]
+E

[
νi
t+1(X(y,xj))

])}
.

By Property 6, πi(y,xj) + αE
[
εit+1(X

i(y,xj))
]
is nonincreasing in y for y > Ri(xj), X(y,xj) is

stochastically nondecreasing in y, and ν(·) is a nonincreasing function, so xi must be a best response.

Further,

V i
t (x

i, xj) = πi(xi, xj)+α
(
πi∗/(1−α)+E

[
εit+1(X

i(xi, xj))
]
+E

[
νi
t+1(X(xi, xj))

])
= V i∗ + εit(x

i)+ νt
i (x

i, xj). Q.E.D.
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Appendix EC.2: Proofs of Lemmas for Application Models of Section 4

Proof of Lemma 3 Taking partial derivatives of πi(x, z),

∂πi(x, z)

∂x
= (ri − ci)− (ri +hi −αci)P(x>Di + γji(Dj − z)+) (EC.1)

∂πi(x, z)

∂z
= −(ri +hi −αci)γjiP(Dj − (x−Di)/γji < z ≤Dj) (EC.2)

∂2πi(x, z)

∂x2
= −(ri +hi −αci)fΛi(z)(x) (EC.3)

= −(ri +hi −αci)

[
fDi(x)P(Dj ≤ z)+

∫ z+x/γji

z

fDi(x− γji(w− z))fDj (w)dw

]
∂2πi(x, z)

∂x∂z
= −(ri +hi −αci)γji

∫ z+x/γji

z

fDi(x− γji(w− z))fDj (w)dw. (EC.4)

Equations (EC.4), (EC.3), and (EC.2) imply that πi(yi, yj) is (a) submodular in (yi, yj), (b) concave

in yi, and (c) nonincreasing in yj respectively. Q.E.D.

Proof of Lemma 4 Define Ki(x, z) = ∂πi(x,z)

∂x
= 0 where

∂πi(x, z)

∂x
= (ri − ci)− (ri +hi −αci)P(x>Di + γji(Dj − z)+)

= (ri − ci)− (ri +hi −αci)
[
P(x>Di)P(z >Dj)

+

∫ z+x/γji

z

P(x>Di + γji(w− z))fDj (w)dw

]
.

We find the derivative of the best response function via the implicit function theorem as follows:

∂Ri(z)

∂z
=

−∂Ki

∂z

∂Ki

∂x

∣∣∣∣∣
(Ri(z),z)

where

∂Ki

∂x
= −(ri +hi −αci)

[
fDi(x)P(z >Dj)+

∫ z+x/γji

z

fDi(x− γji(w− z))fDj (w)dw

]
, and

∂Ki

∂z
= −(ri +hi −αci)

[∫ z+x/γji

z

γjifDi(x− γji(w− z))fDj (w)dw

]
.

The first thing to note is that the best response function’s derivative has a consistent sign (specif-

ically, negative), indicating monotonicity of the function as in (a). Clearly,
∣∣∂K
∂z

∣∣ < ∣∣∂K
∂x

∣∣ because
γji < 1 and fDi(x)P(z >Dj)≥ 0.9 The result of this is that the magnitude of the slope of the best

response function will be less than 1, yielding (b). Q.E.D.

9 To accommodate γji = 1 one would simply need a sufficient condition on the support of demand to guarantee that

fDi(x)P(z >Dj)> 0.
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Proof of Lemma 5 Note

X i(yi,Rj(yi)) =
(
yi −Di − γji(Dj −Rj(yi))+

)+
.

For any fixed (Di,Dj), a sufficient condition for this to be nondecreasing is γji ∂R
j(yi)

∂yi
≥−1. But

this is true by Lemma 4 and because 0≤ γji < 1. Thus, unconditioning on demand, we have the

desired result. Finally, X i(·) is clearly stochastically nondecreasing in both yi and yj so X(yi, yj)

is stochastically nondecreasing in (yi, yj). Q.E.D.

Proof of Lemma 6 Taking partial derivatives of πi(x, z),

∂πi(x, z)

∂x
= (ri − ci)− (ri +hi −αci)(1−βii)P(D

i ≤ (1−βii)x+βijz) (EC.5)

∂πi(x, z)

∂z
= −(ri +hi −αci)βijP(D

i ≤ (1−βii)x+βijz) (EC.6)

∂2πi(x, z)

∂x2
= −(ri +hi −αci)(1−βii)

2fDi((1−βii)x+βijz) (EC.7)

∂2πi(x, z)

∂x∂z
= −(ri +hi −αci)βij(1−βii)fDi((1−βii)x+βijz). (EC.8)

Equations (EC.8), (EC.7), and (EC.6) imply that πi(yi, yj) is (a) submodular in (yi, yj), (b) concave

in yi, and (c) nonincreasing in yj respectively. Q.E.D.

Proof of Lemma 7 Define Ki(x, z) = ∂πi(x,z)

∂x
= 0 where

∂πi(x, z)

∂x
= (ri − ci)− (ri +hi −αci)(1−βii)P(D

i ≤ (1−βii)x+βijz).

We find the derivative of the best response function via the implicit function theorem as follows:

∂Ri(z)

∂z
=

−∂Ki

∂z

∂Ki

∂x

∣∣∣∣∣
(Ri(z),z)

where

∂Ki

∂x
= −(ri +hi −αci)(1−βii)

2fDi((1−βii)x+βijz), and

∂Ki

∂z
= −(ri +hi −αci)βij(1−βii)fDi((1−βii)x+βijz).

Thus,
∂Ri(z)

∂z
=

−βij

1−βii

≤ 0.

Clearly, the best response function’s derivative has a consistent sign (specifically, negative) since

βii ≥ 0 and βij ≥ 0. Under the assumption that βii+βij < 1, the magnitude of the slope of the best

response function will be less than 1 (
∣∣∣∂Ri(z)

∂z

∣∣∣< 1), yielding (b). Q.E.D.
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Proof of Lemma 8 Note

X i(yi,Rj(yi)) =
(
yi −Di −βiiy

i +βijR
j(yi)

)+
.

d

dx
X i(x,Rj(x)) =

(
(1−βii)+βij

∂Rj(x)

∂x

)
P(Di ≤ (1−βii)x+βijR

j(x)).

Since βjj + βji < 1, ∂Rj(x)

∂x
< 1, which with βii + βij < 1, is a sufficient condition for (1 − βii) +

βij
∂Rj(x)

∂x
> 0 ensuring X i(yi,Rj(yi)) is nondecreasing.

Clearly, X i(·) is stochastically nondecreasing in both yi and yj so X(yi, yj) is stochastically

nondecreasing in (yi, yj). Likewise since X i(yi, yj) = ((1−βii)y
i−Di+βijy

j)+ = (yi−Λ(yi, yj))+ ≤

yi since Λ(yi, yj)≥ 0. Q.E.D.

Proof of Lemma 9 Taking partial derivatives of πi(x, z),

∂πi(x, z)

∂x
= ri

∂µi(x, z)

∂x
− (1−αθ) = riγxγ−1z−β − (1− θα) (EC.9)

∂πi(x, z)

∂z
= ri

∂µi(x, z)

∂z
=−riβxγz−β−1 (EC.10)

∂2πi(x, z)

∂x2
= ri

∂2µi(x, z)

∂x2
= riγ(γ− 1)xγ−2z−β (EC.11)

∂2πi(x, z)

∂x∂z
= ri

∂2µi(x, z)

∂x∂z
=−riγβxγ−1z−β−1. (EC.12)

Equations (EC.12), (EC.11), and (EC.10) imply that πi(yi, yj) is (a) submodular in (yi, yj), (b)

concave in yi, and (c) nonincreasing in yj. Q.E.D.

Proof of Lemma 10 Note that Ri(z) is the solution (for x) to the equation ∂πi(x,z)

∂x
= 0.

Therefore, rearranging equation (EC.9) in Lemma 3

Ri(z) =

(
riγ

1−αθ

) 1
1−γ

z
−β
1−γ .

Thus,

∂Ri(z)

∂z
=

−β

1− γ

(
riγ

1−αθ

) 1
1−γ

z
−β
1−γ−1.

Thus, the best response function’s derivative has a consistent sign (specifically, negative) and due

to the assumptions above has magnitude less than one. Q.E.D.

Proof of Lemma 11 Note

X i(yi, yj) =X i(yi,Rj(yi)) = θyi

which clearly satisfies all three properties. Q.E.D.
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Figure EC.1 Contour plot for Property 4 as a function of α (for player 1) and γ21.

Appendix EC.3: Exploring the Generality of Property 4

Two key properties included in the paper are Properties 4 and 5. As discussed, Property 5 is stronger

than Property 4 but has the dual advantage of not requiring a recursive calculation and endowing

the reader with intuition. To illustrate the efficacy of Property 4, we have numerically exercised the

stockout-based substitution inventory model with uncertain demands distributed as Uniform[0,1]

using Mathematica code. Although the calculation of eit(x) described in Definition 5 requires a

recursion, the term eit+1(x̂
i
t+1) is the maximum value in the following period, so the calculation is

not overly arduous. That said, practical closed-form expressions cannot be derived, unfortunately,

despite using uniformly distributed demands, which suggests that even more elaborate demand

distributions would not yield them either. However, we can numerically illustrate circumstances

under which Property 4 holds and does not hold. First, taking a somewhat arbitrary example where

(ri − ci) = 100, ri +hi = 150, ci = 20, γ12 = 0.1, and α2 = 0.9, we can examine Figure EC.1.

The shaded area in Figure EC.1 represents the values of γ21 and α1 where Property 4 holds,

whereas the non-shaded area is where the property is violated. The boundary between the regions

is not very smooth, which could be partly due to the machine precision but also possibly due to the

non-linear dependencies of the profit functions and equilibrium solution (across multiple periods)

upon γ21 and α1. We note we can easily find regions where Property 4 is upheld or violated. So it

is not difficult to find examples where the property holds and, consequently, where Theorem 2 is

true. Likewise, Figure EC.1 also suggests that the SSE may not be Markov everywhere since the

property does not hold universally (of course, Property 4 is a sufficient condition so a violation of

it doesn’t necessarily indicate the SSE is not an ME).
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We can vary some of the parameters to see the effect upon Property 4. By reducing the holding

cost or unit acquisition cost for firm 1, we see the area where the property is violated expands.

The reasoning for this is that it is providing firm 1 with a greater incentive to overstock since it

is cheaper for him to do so. Exercising other parameters seem to have either unexpected or non-

monotone effects upon the proportions of the shaded and non-shaded regions in figures analogous

to Figure EC.1, but we are left with the impression that Property 4 is relatively straightforward to

satisfy for a variety of parameter combinations but not universally supported indicating that not

all SSE will be Markov, accentuating our message that the SSE concept may be lacking sometimes.

Using the same technique to find numerical examples where Property 5 holds is far more challeng-

ing. However, it is possible with other demand distributions (particularly ones that are bounded

away from zero) it may hold. We have maintained it in the paper due to its advantages given above

but caution the reader that it appears to be quite a strong condition.




