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1. Introduction
The production, storage, and delivery of goods between
factories, warehouses, and retailers is a rich area of study
with many interesting questions still unsolved. These are
issues of substantial importance, because the coordination
of goods between members of supply chains constitutes
a significant investment in terms of managerial attention,
inventory costs, and capital investments. Careful analy-
sis of these problems can increase responsiveness to end-
customers’ needs without necessarily increasing costs. In
this paper, we analyze the basic model that includes two
critical elements: multiple stages (two echelons) and pro-
duction capacity constraints at both stages.
The issue of optimal ordering and inventory policies

in multiechelon production and inventory systems with-
out any capacity constraints was the focus of Clark and
Scarf (1960). They consider a purely serial supply chain
(known as a multiechelon system), with the lowest instal-
lation facing stochastic demand from the end customer. In
a finite-horizon setting, Clark and Scarf (1960) determine
that the optimal ordering policy for the entire multiechelon
system can be decomposed into decisions based solely on
echelon inventories. Federgruen and Zipkin (1984) extend
the multiechelon result to an infinite-time horizon. Rosling
(1989) demonstrates that a pure assembly system can be
reduced to a serial multiechelon system. The Clark and
Scarf (1960) results have been reproven by Chen and Zheng
(1994) using lower bounds on the long-run costs, and by
Muharremoglu and Tsitsiklis (2003) using an alternative
approach based on item-customer decomposition.

The research for systems with limited production capac-
ity (defined as a finite upper limit on the amount that may
be processed in a single period) under periodic review is
mostly constrained to one-echelon systems. Federgruen and
Zipkin (1986a, b) consider a capacitated single installa-
tion for infinite-horizon average-cost and discounted-cost
criteria, respectively. Following Zipkin’s (1989) analysis
of the cyclical single-stage system without capacity limits,
Kapuscinski and Tayur (1998) and Aviv and Federgruen
(1997) study a single installation with limited capacity fac-
ing stochastic cyclical demand and find the optimal policy
for such systems; Metters (1997) applies heuristics to the
same problem with lost sales.
There has been very little research on a multiechelon

system with limited capacity at each installation. Speck
and Van der Wal (1991a) consider a two-echelon sys-
tem, present a counterexample justifying why a modified
base-stock policy is not optimal, and suggest that numeri-
cally “nearby” modified base-stock policies provide a good
approximation to the optimal policy. Speck and Van der
Wal (1991b) provide an algorithm to determine parameter
values for such a base-stock policy. Glasserman and Tayur
(1994, 1995) consider this problem, but show analysis for
the capacitated supply chain assuming that the system oper-
ates under a base-stock policy. Roundy and Muckstadt
(2000) also assume base-stock policy (for one stage) and
propose an efficient approximation.
This paper demonstrates that when the smallest capacity

is at the downstream facility in a capacitated serial sup-
ply chain, the optimal policy is a simple modification of
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an echelon base-stock policy. The policy for lower echelon
is unchanged—we order up to a specific target (subject to
the availability from the higher echelon). The policy for the
higher echelon is modified. The higher echelon orders up to
a specific echelon target, taking care not to exceed specific
installation (on-hand) inventory. Due to the additional con-
straint on the installation inventory, we label the policy as
the modified echelon base-stock (MEBS) policy. This pol-
icy can be interpreted as having a structure of generalized
kanban production-inventory policies. These are policies
with release mechanisms that could encompass constraints
on the amounts of inventory in a subset of consecutive
installations. Axsäter and Rosling (1999) rank various poli-
cies, including generalized kanban policies, in multistage
systems with various release mechanisms, according to
how general they are. Dallery and Liberopoulos (2000)
and Liberopoulos and Dallery (2000) also consider gen-
eralized kanban control policies and contain references to
other papers in this area. Even though most of this liter-
ature deals with Poisson arrivals of demand and exponen-
tially distributed service times in continuous time, some of
the observations can be related to our findings. Veatch and
Wein (1994) numerically show that kanban policies with
unit-sized containers are generally superior to order-up-to
policies when the lower installation’s capacity is smaller,
and this policy relationship is reversed when the capacity
condition is reversed. For the case when lower installation
has lower or equal capacity in a periodic setting, the policy
we show to be optimal can be interpreted as generalized
kanban. Although not exactly the same, it is similar to the
one considered in Veatch and Wein (1994), which justifies
the good performance of the Veatch and Wein heuristics.
Our main result—providing the structure of the opti-

mal policy for a two-echelon system with the constraining
capacity closer to the customer—is based on a few obser-
vations. We show that nondominated ordering is limited to
a “band” of states (formally defined in Definition 1) and
that for the states in the “band,” the cost function is sep-
arable. Specifically, we demonstrate that it will never be
optimal for the higher installation (farther from the cus-
tomer) to hold more inventory than can be processed in
a single period by the lowest stage, which is a bottle-
neck. This immediately implies that the conventional (Clark
and Scarf 1960) echelon base-stock policy cannot be opti-
mal. According to the conventional policy, a huge spike of
demand would generate the same-size order at the higher
installation, which may exceed the capacity constraint, thus
generating unnecessary holding costs. Using this “band”
dominance, in a two-stage system we substitute the con-
straints upon production by a constraint on the inventory,
and show separability of the cost function. The resulting
MEBS policy resembles the conventional multiechelon pol-
icy, except for the additional “band” constraint.
We permit general (multiple of period length) lead times

leading to the lower installation, but restrict the lead
time at the higher installation to one period. Without this

limitation, we would not be able to guarantee that the
inventory remains in the undominated “band.” The limita-
tion to two stages is directly linked to the lead-time issue;
in fact, Glasserman and Tayur (1994) describe a technique
of inserting dummy installations to act as a surrogate for
positive lead times. The final limitation of our model is
the requirement that the constraining capacity is at the
lower installation. We address this issue with an example
in §4.3.4. We show that our results extend to other system
configurations in §4.3.3.
This paper is organized as follows. In §2, we describe the

model in detail, stating the sequence of events and formu-
lating the model. Section 3 illustrates the deceptive nature
of the numerical results where some behavior that is appar-
ently not base-stock in nature is optimal. Section 4 con-
tains the paper’s key results for the finite horizon. In this
section we prove the optimal policy and extend the model
to specific lead-time models and to a model with nonsta-
tionary stochastic demands. Section 5 extends the results
to discounted-cost and average-cost criteria for the infinite
horizon. Concluding remarks are in §6.

2. Model
Consider a serial multiechelon supply chain with N instal-
lations (see Figure 1). Each of the installations, j > 1,
supplies its immediately lower installation, j − 1, in the
supply chain and receives goods from installation j + 1.
Installation N receives goods from an outside uncapacitated
supplier. Each installation j , other than N , is limited in its
order by the available inventory held at installation j + 1.
Additionally, at installation j there is a capacity limit Kj

that serves as an upper limit on the amount that can be pro-
cessed in each period. Installation 1 supplies goods to the
end customer, whose demand, Dn, is stochastic and inde-
pendent from period to period. Dn � 0 and �n = ƐDn <�.
The sequence of events is as follows: (1) at the beginning

of every period, installation 1 places an order with instal-
lation 2, installation 2 places an order with installation 3,
and so forth up to installation N ; (2) installation 2 then
delivers the ordered amount to installation 1, installation 3
delivers to installation 2, and so forth, until the outside
supplier delivers to installation N ; and (3) end-customer
demand is then realized, and installation 1 attempts to sat-
isfy this demand as closely as possible using its avail-
able stock. The sequence of orders in Step (1) is listed
in this way to demonstrate the dynamics of the system,
although these ordering decisions are taken concurrently.1

Unsatisfied demand is backlogged with a linear penalty
cost per period, p. Echelon j incurs an incremental holding
cost, hj � 0, for each unit of inventory in each period, and

Figure 1. Multiechelon system with N installations.
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the installation holding cost is Hj =
∑

k�j hk. The objective
is to minimize the discounted sum of holding and penalty
costs. In the finite-horizon case, time is counted backwards
and n represents the number of periods remaining until the
end of the horizon. Initially, it is assumed that there are no
delivery lead times, other than delays caused by the dynam-
ics of the system. In addition, we assume without loss of
generality that the shipping costs are zero.
The variables considered here are: The inventory at

installation j at the start of period n is xj
n; the amount

ordered by installation j in period n is aj
n � 0; and yj

n

is inventory in installation j after shipments are made in
period n. The inventory dynamics are described by

x1n−1 = y1n −Dn = x1n + a1n −Dn�

x
j
n−1 = yj

n = xj
n − aj−1

n + aj
n for j > 1�

An echelon inventory is defined as the amount in transit
to and in stock at an installation plus the amount in transit
to and in stock at all lower installations. The corresponding
echelon variables X̃n = �Xj

n�
N
j=1 ∈ �N and Ỹn = �Y j

n �
N
j=1 ∈

�N are defined as Xj
n =

∑j
i=1 x

i
n and Y j

n =∑j
i=1 y

i
n. Clearly,

Y j
n =Xj

n + aj
n�

x
j
n−1 =X

j
n−1 −X

j−1
n−1 = Y j

n − Y j−1
n �

The equivalence of installation and echelon variables is
apparent, but the benefits of using echelon variables may
not be obvious. Clark and Scarf (1960) show that the opti-
mal ordering policy for this model could be described
by echelon base-stock levels, z1� z2� � � � � zN : If the echelon
inventory Xj

n is below zj , order zj − Xj
n; otherwise, order

nothing. (When there is insufficient stock at an upstream
installation, a partially filled order is preferable to no deliv-
eries at all.)
Clearly, the echelon inventory variables are nondecreas-

ing in echelon levels and (see Figure 2) each potential value
of Y j

n is bounded below by Xj
n and above by Xj+1

n , except
for j = N . Capacity limits impose an additional constraint
on each Y j

n . When demand is realized, all Xs and Y s are
shifted leftwards by the size of the demand.
We define the entire model with the following recursion

statements.

Definition (Core Model)

Vn�X̃n�= min
Ỹn∈��X̃n�

Jn�Ỹn�� (1)

Jn�Ỹn�= L�Ỹn�+�ƐDn
Vn−1�Ỹn −Dn�� (2)

V0�·�= 0� (3)

Figure 2. Echelon variables provide natural ordering.
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where

L�Ỹn�=ƐDn

{( N∑
j=1

hj

)
�Y 1

n −Dn�
++p�Dn−Y 1

n �
+
}

+
N∑
i=2

hi�Y
i
n−Y 1

n �

=
N∑
i=1

hi�Y
i
n−ƐDn

Dn�+
(
p+

N∑
i=1

hi

)
ƐDn

�Dn−Y 1
n �

+�

(4)

��X̃n�=


Ỹn∈�N

∣∣∣∣∣∣∣
Xi

n�Y i
n�Xi+1

n �Y i
n−Xi

n�Ki�
i=1�����N−1�

XN
n �Y N

n �Y N
n −XN

n �KN �




and

X̃n = �X1
n�X

2
n� � � � �X

N
n ��

Ỹn = �Y 1
n � Y

2
n � � � � � Y

N
n ��

Ỹn −Dn = �Y 1
n −Dn�Y

2
n −Dn� � � � � Y

N
n −Dn��

Vn represents the expected discounted costs of operat-
ing under the optimal inventory policy in this capacity-
limited system for a time horizon of n periods. L represents
the periodic costs, or the costs (holding and backorder)
incurred in a single period. The notation x+ denotes
max�x�0� and �a� b�+ denotes max�a� b�. The discount
factor � assumes values � � 0. The costs of purchasing
goods, c � 0 (assumed linear in amount), from the exter-
nal supplier, and the revenues, r � 0 (assumed linear in
amount), collected from the end customer are omitted from
this model. It can be easily demonstrated that these amounts
can be absorbed into the holding and penalty costs by
redefining p′ = p+ �r−c��1−�� and h′

N = hN +c�1−��.
When p + r�1 − �� > c�1 − ��, the derivations and the
optimal policy structure (similar to Veinott 1966) are not
affected.

3. The Disguised Base-Stock Policy
A base-stock policy attempts to bring an echelon inventory
up to its base-stock level if the inventory is below this level
and orders nothing otherwise. In this section, we demon-
strate some behavior of the capacitated model that could be
construed as non-base-stock. Table 1 shows optimal behav-
ior of the capacitated model for the following parameters.
In this example, ƐD= 9�6< 10=K1 =K2.

N =2� c=0� h2=0�05� h1+h2=1� p=10�

r=0� �=0�9� K1=10� K2=10� Pr�D=7�=0�1�

Pr�D=8�=0�2� Pr�D=9�=0�25� Pr�D=10�=0�1�

Pr�D=11�=0�2� Pr�D=12�=0�1� Pr�D=13�=0�05�

As can be seen in the last two columns of Table 1, for
x1 � 15 and x2 = 8, the model is ordering up to echelon
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Table 1. Example of the “push-ahead” effect.

Initial Initial Ending
installation echelon Installation echelon
inventory inventory orders inventory

x1 x2 X1 X2 a1 a2 Y 1 Y 2

5 8 5 13 8 10 13 23
6 8 6 14 8 10 14 24
7 8 7 15 8 10 15 25
8 8 8 16 7 9 15 25
· · · · · · · ·
15 8 15 23 0 2 15 25
16 8 16 24 0 2 16 26
17 8 17 25 0 2 17 27
18 8 18 26 0 1 18 27
19 8 19 27 0 0 19 27
20 8 20 28 0 0 20 28

levels of 15 and 25 for echelons 1 and 2, respectively, but
the policy then varies from this for higher initial stocks
at installation 1. The last four rows of Table 1 show the
target level for echelon 2 increasing above a level of 25,
apparently approaching another “base-stock” level of 27.
This type of behavior, labeled the “push-ahead” effect by
Speck and Van der Wal (1991a), appears to be an exception
to the base-stock policy. The model optimally orders more
than a typical base-stock would suggest. However, this can
be shown to be a disguised version of a base-stock policy
shown to be optimal in §4.

4. Finite-Horizon Results

4.1. Main Case

Consider a case when the capacity of installation 1 is the
smallest in the supply chain. We demonstrate that then
a modified echelon base-stock policy is optimal for the
capacitated serial supply chain with N = 2.

Lemma 1. Let K1 �Kj . For any X̃n, all optimal Ỹn satisfy

yj
n �max�K1� x

j
n − aj−1

n � for j > 1.

Proof. See the appendix.

Corollary 1. Assume that K1 � Kj and Xj
n −Xj−1

n � K1

for all j ∈ �2� � � � �N  . Then,
(a) The optimal Y j

n satisfy Y j
n − Y j−1

n �K1 for all j > 1.
(b) If the optimal policy is followed, then the inventory

positions satisfy Xj
m −Xj−1

m �K1 for all j > 1 and m<n.
(c) All capacities may be replaced with capacities equal

to K1 without affecting costs.

Corollary 1(c) is true because none of the capacity in
excess of a level equal to K1 is used. This is apparent for
all installations j < N because all aj

n � xj+1
n � K1 (from

Corollary 1(b)). It is true for installation N also, because
the resulting inventory xN

n−1 �K1, and thus aN
n �K1 also.

Remark 1. If the bottleneck capacity is at echelon i0, i.e.,
Ki0

�Ki for all i, then Lemma 1 and Corollary 1 hold for
all echelons j > i0.

Lemma 1 can be easily modified to include lead times:

Remark 2. If there are positive lead times "j for delivery
of goods from installation j + 1 to j , then the installation
inventories xj and yj additionally include goods shipped
from installation j + 1 that have not yet arrived at installa-
tion j . Under this redefinition,
• For any X̃n, all optimal Ỹn satisfy yj

n �max��"i+1�Ki0
�

xj
n −aj−1

n � for j > i0, where Ki0
=minj Kj (i0 is the bottle-

neck).

Consequently, upstream of the bottleneck, Corollaries
1(a) and 1(b) hold, but the limit of K1 (or “band,” see
below) needs to be replaced by a limit of �"j + 1�K1.
Corollary 1(c) holds unchanged. For further discussion of
the effect of lead times, see §4.3.1.
It may be opportune to define the following region we

commonly refer to as the “band.”

Definition 1. Feasibility band, or simply band, is defined
as � #= �X̃ ⊂�N �Xj �Xj+1 �Xj +K1� j � 1 .

This band establishes the region where the inventory at
all installations, except installation 1, does not exceed K1.
Lemma 1 determines that when following an optimal pol-
icy from an inventory position outside the band, the sys-
tem will traverse to the band in the most direct manner.
Corollary 1(a) implies that the installations upstream (i.e.,
away from the consumer) of the most constrained installa-
tion will not hold more than K1 units of inventory once the
inventory levels are within the band; i.e., once in the band,
the system will remain within the band.
Before showing the structure of the optimal policy, we

prove some properties of the model.

Property 1. (a) Jn is continuous and convex.
(b) Vn is continuous and convex.
(c) �Vn is nondecreasing in n.

Proof. (a) and (b) are proved by induction. Because
V0 = 0, J1 = L is clearly continuous and convex because
each term in L (see (4)) is continuous and convex. Using
Proposition B-4 in Heyman and Sobel (1984), convexity of
Jn and set convexity of � #=⋃

X̃n
��X̃n� implies that Vn is

convex. Continuity of Vn follows from convexity of Vn for
all internal points of the feasibility set and is guaranteed
from the continuity of Jn and compactness and convexity
of ��X̃n� for the border points. Assume that Vn is contin-
uous and convex. Because expectation and linear transfor-
mation preserve both continuity and convexity, ƐVn�Ỹ −D�
is continuous and convex. Therefore, Jn+1, as a sum of two
continuous and convex functions, is continuous and con-
vex. (c) �Vn cannot decrease in n from the nonnegativity
of the one-period function, L. �

While the objective function is not generally separable,
it does separate within the band.

Theorem 1. Assume N = 2, X2
n −X1

n � K1, and K1 �K2.
The two-installation model can be decomposed into
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programs dependent only upon the echelon inventories, as
follows:

Vn�X
1
n�X

2
n�= V 1

n �X
1
n�+V 2

n �X
2
n�� (5)

In addition, V 1
n and V 2

n are convex.

First, we state without a proof, a lemma used to show
decoupling of the function value.

Lemma 2 (Karush 1959). (a) If a function f �y� is convex
on �−���� and attains its minimum at y∗, then

min
a�y�b

f �y�= f L�a�+ f U �b��

where f L�a� #= mina�y f �y� = f �max�a� y∗�� is convex
nondecreasing in a and f U �b� #= f �b� − minb�y f �y� =
f �b�− f �max�b� y∗�� is convex nonincreasing in b.
(b) If a function f �y� is quasi-convex on �−���� and

attains its minimum at y∗, then

min
a�y�b

f �y�= f L�a�+ f U �b��

where f L�a� #= mina�y f �y� = f �max�a� y∗�� is non-
decreasing in a and f U �b� #= f �b� − minb�y f �y� =
f �b�− f �max�b� y∗�� is nonincreasing in b.

Remark 3. Note that Lemma 2(a) is taken directly from
Karush (1959), adjusted for notation. Lemma 2(b) also may
be straightforwardly shown. Porteus (2002) explains that
when g�x� #= Ɛf �x − X�, where X is a Pólya frequency
function random variable and f is quasi-convex, then g
is also quasi-convex.2 However, the decomposition of the
optimality results cannot be extended to the context with
quasi-convex periodic costs for echelon 1. This is simply
because the optimization occurs across both echelon inven-
tory decisions, and the sum of quasi-convex functions is
not necessarily quasi-convex. There appear to be no obvi-
ous conditions that could prove sufficient to yield structural
results in such a context.

Proof of Theorem 1. The critical element of the proof
is rephrasing the constraints into simpler, but equivalent,
conditions. Such rephrasing holds in all periods if the initial
point is within the band. From the definition of ��X̃n�, we
have

X1
n � Y 1

n �X2
n� (6)

Y 1
n �X1

n +K1� (7)

X2
n � Y 2

n �X2
n +K2� (8)

From Corollary 1(b), because the beginning inventory is
within the band (i.e., X̃n ∈� ) and K1 �K2,

Y 2
n � Y 1

n +K1� (9)

Because K1 �K2 and Y 1
n � X2

n (from Equation (6)), we
achieve Y 1

n +K1 �X2
n +K2 and (8) can be replaced by (9).

Because X2
n − X1

n � K1, the upper bound in (6) is less
than or equal to the upper bound in (7). Combining these
facts, under the conditions in the theorem statement, we
can restate the constraint conditions in period n as

X1
n � Y 1

n �X2
n � Y 2

n � Y 1
n +K1� (10)

By starting within the band in period n, from Corollary 1,
for all periods m<n, X2

m−X1
m �K1 and thus the constraint

set can be expressed by the simplified conditions (10) for
all m < n. Most importantly, when imposing (10), we do
not need to impose the capacity constraints anymore.
The proof of the theorem is by induction, and the claim

holds trivially for n= 0. Assume it holds for n− 1 (induc-
tion assumption).
First, we need to demonstrate that Vn�X

1
n�X

2
n�=V 1

n �X
1
n�+

V 2
n �X

2
n�.

Vn�X̃n�= min
Ỹn∈��X̃n�




ƐDn

[( 2∑
j=1

hj

)
�Y 1

n −Dn�
++p�Dn−Y 1

n �
+
]

+h2�Y
2
n −Y 1

n �+�ƐDn
V 2

n−1�Y
2
n −Dn�

+�ƐDn
V 1

n−1�Y
1
n −Dn�




�

(11)

Define

f 2
n �Y

2
n �= h2Y

2
n +�ƐDn

V 2
n−1�Y

2
n −Dn��

Because f 2
n is convex on � (based on the induction assump-

tion), from Lemma 2 we get

min
X2

n�Y 2
n�Y 1

n+K1

f 2
n �Y

2
n �= f 2L

n �X2
n�+ f 2U

n �Y 1
n +K1��

where

f 2L
n �X2

n�=min
X2

n�x
f 2
n �x�

and f 2L
n and f 2U

n are convex functions on �. Holding Y 1
n

constant and minimizing over Y 2
n ,

Vn�X̃n�= min
X1

n�Y 1
n�X2

n




ƐDn

[( 2∑
j=1

hj

)
�Y 1

n −Dn�
++p�Dn−Y 1

n �
+
]

−h2Y
1
n +f 2U

n �Y 1
n +K1�

+�ƐDn
V 1

n−1�Y
1
n −Dn�+f 2L

n �X2
n�




= min
X1

n�Y 1
n�X2

n




ƐDn

[( 2∑
j=1

hj

)
�Y 1

n −Dn�
++p�Dn−Y 1

n �
+
]

−h2Y
1
n +f 2U

n �Y 1
n +K1�

+�ƐDn
V 1

n−1�Y
1
n −Dn�




+f 2L
n �X2

n�

= min
X1

n�Y 1
n�X2

n

f 1
n �Y

1
n �+f 2L

n �X2
n�� (12)

Again, applying Lemma 2,

Vn�X̃n�= f 1L
n �X1

n�+ f 1U
n �X2

n�+ f 2L
n �X2

n�

= V 1
n �X

1
n�+V 2

n �X
2
n��
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where

V 1
n �X

1
n�= min

X1
n�Y 1

n




ƐDn

[( 2∑
j=1

hj

)
�Y 1

n −Dn�
++p�Dn−Y 1

n �
+
]

−h2Y
1
n +f 2U

n �Y 1
n +K1�

+�ƐDn
V 1

n−1�Y
1
n −Dn�




�

V 2
n �X

2
n�= min

X2
n�Y 2

n

{
f 1U
n �X2

n�+h2Y
2
n +�ƐDn

V 2
n−1�Y

2
n −Dn�

}
�

and both V 1
n and V 2

n are convex from Lemma 2, which
completes the induction. �

Let '1∗
n and '2∗

n be the minimizers of f 1
n and f 2

n , respec-
tively. We now formally define and discuss the induced
penalty functions.

Definition 2 (Induced Penalty Functions). The indu-
ced penalty functions incurred in the two-echelon model are

f 2U
n �x�=




0� x�'2∗
n �

h2�x−'2∗
n �

+�ƐDn
(V 2

n−1�x−Dn�−V 2
n−1�'

2∗
n −Dn�)�

x<'2∗
n �

and

f 1U
n �x�=




0� x� '1∗
n �

l�x�− l�'1∗
n �−h2�x−'1∗

n �

+ f 2U
n �x+K1�− f 2U

n �'1∗
n +K1�

+�ƐDn
(V 1

n−1�x−Dn�−V 1
n−1�'

1∗
n −Dn�)�

x < '1∗
n �

where

l�x�= ƐDn

[( 2∑
j=1

hj

)
�x−Dn�

+ +p�Dn − x�+
]
�

Just as Clark and Scarf (1960) determined that an
induced penalty function acted upon the upper echelon as a
punishment when it was unable to supply enough stock for
the lower echelon to achieve its optimal inventory position
(base-stock level), the capacitated case has similar induced
penalties. First, echelon 1 incurs a penalty (f 2U

n ) whenever
its combination of order and capacity level (Y 1

n +K1) fails
to reach a sufficient level. This can be interpreted as assum-
ing (as a cost) the additional benefit that echelon 2 would
have accrued if the lowest installation were not capacity
limited. (Corollary 1(a) proves that the higher echelons’
orders are limited as a result of the lowest installation’s
capacity being the “bottleneck” of the production system.)
Second, the higher echelon incurs a penalty (f 1U

n ) whenever
its stock is insufficient to supply echelon 1 with an amount
needed to achieve its base-stock level. This is analogous to
the induced and penalty in Clark and Scarf (1960). Each
installation potentially incurs a penalty for the limitation it
imposes upon the other installation. Note that while f 1U

and f 2U are “normalized,” i.e., equal to 0 at '1∗
n and '2∗

n ,
f 1L and f 2L are not. Instead, f 1Lmin f 1 and f 2Lmin f 2 are
the costs of deviating from the minimums.

Let us now construct a “capacitated” version of a base-
stock policy. This policy is within the family of generalized
kanban policies, where K1 is the number of kanbans at
stage 2.

Definition 3 (MEBS Policy). The modified echelon
base-stock policy (MEBS) can be written as (Y j∗

n �Xj
n for

all j)

Y 1∗
n =min�z1n�X

1
n +K1�X

2
n��

Y j∗
n =min�zj

n� Y
�j−1�∗
n +K1�X

j+1
n � for j = 2� � � � �N − 1�

Y N∗
n =min�zN

n � Y
�N−1�∗
n +K1��

Consider the function Jn�·�, defined in (2). We de-
fine the following: +n #= argminY 1 J 1

n �Y
1� and z2n #=

argminY 2 J 2
n �Y

2�, where J 1
n �Y

1� = h1�Y
1 − ƐDn

Dn� +
�p + ∑N

i=1 hi�ƐDn
�Dn − Y 1�+ + �ƐDn

V 1
n−1�Y

1 − Dn� and
J j
n �Y

j�= hj�Y
j − ƐDn

Dn�+ �ƐDn
V

j
n−1�Y

j −Dn� for j > 1.
If z2n − +n � K1, then z1n #= argminY 1 Jn�Y

1� Y 1 +K1�, else
z1n #= +n. From these definitions we see that if the intersec-
tion of the two echelons’ minimizing points is within the
band, then each of them is the base-stock level. However, if
the intersection does not occur within the band, then eche-
lon 1’s base-stock level will be found along the upper edge
of the band, where Y 2 = Y 1 +K1.

Theorem 2. The modified echelon base-stock policy
(MEBS) with parameters �z1n� z

2
n� defined above is optimal

for an N = 2 system where K1 �K2 and X2 −X1 �K1.

Proof. See the appendix.

Recall that, based on Lemma 1, the optimal policy out-
side the above-defined band, � , is to order nothing until
the inventory position is drawn into the band. While in the
band, the MEBS policy differs from the “uncapacitated”
echelon base-stock policy (demonstrated in Clark and Scarf
1960) only in that it constrains the system to operate within
the inventory band. Let us revisit the “counterexample”
presented in Table 1 (§3). The parameters are found to
be z1 = 15 and z2 = 27. Figure 3 illustrates this case.
Note that set ��X1�X2� = ��Y1� Y2� � X1 � Y1 � X2 � Y2�
Y1 �X1+K1� Y2 �K2 is truncated to the band �Y1 � Y2 �
Y1 +K1 ; i.e., desired inventory at echelon 2 is limited by
min�X1 + K1� z

2�. Within this feasible set, MEBS policy
first chooses Y1 closest to the target z1 and then Y2 closest to
z2. Thus, z

1 = 15 implies that for X1 � 15, optimal Y1 � 15
and, consequently, Y2 � 15 + 10 = 25 < z2. Higher start-
ing levels of inventory (X1 > 15) allow, however, Y2 to
climb towards and eventually reach the desired z2 = 27.
Note that this result indicates that the form of the base-

stock policy, which Glasserman and Tayur (1995) explore
numerically, could be suboptimal because it does not incor-
porate the censoring effect described in MEBS. Speck and
Van der Wal (1991b) consider a heuristic approach to deter-
mining approximate values of the optimal average cost
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Figure 3. Illustration of MEBS policy with target
�z1� z2� = �15�27�. Starting inventory is at
the lower-left corner of the feasible region
and the optimal inventory �Y1� Y2� is denoted
by a black circle.
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Echelon 1 inventory

Note. Left: Starting from either �7�15� or �8�16� it is optimal to raise
inventory levels to �15�25�.

Right: The optimal decisions for �16�24�, �17�25�, and �18�26� are
�16�26�, �17�27�, and �18�27�, respectively.

value functions. They do not, however, consider the pos-
sibility that the gap between the base-stock levels (i.e.,
z2 − z1) exceeds K1 while K1 �K2. While there is similar-
ity in the direction of adjustments, we can also see that the
Speck and Van der Wal (1991a) heuristic is different in that
they suggest a change in echelon 1’s base-stock level based
on installation 2’s inventory position. That is, at some level
as installation 2’s inventory position increases, the base-
stock level at echelon 1 is also forced to increase. This is
a contrast to the optimal policy where there is an increase
in echelon 2’s base-stock level when there is an increase in
installation 1’s inventory position.

Theorem 3. The optimal base-stock levels, z1n and z2n, are
(a) nondecreasing in period n; and
(b) nonincreasing in K1 so long as K1 � K2 is

maintained.

Proof. See the online appendix at http://or.pubs.informs.
org/pages/collect.html.

The optimal base-stock levels increase in the horizon
length, which is consistent with other inventory models.
Later, we show that these levels stabilize to steady-state
values. If a starting inventory is above the base-stock lev-
els, but still within the band, � , no material will be
ordered and demand will progressively draw down the ech-
elon inventory levels equally until the inventory levels fall
below the base-stock levels, whereupon it will order up to
the base-stock levels, if possible. All inventory paths will
then continue to be below the base-stock levels, and the
inventory territory above the base-stock levels within the
band will not be revisited.3

4.2. Discussion of the Model Assumptions

The restrictions that N = 2 and installation 2 has no lead
times other than those derived naturally from the periodic-
ity of the model are somewhat limiting, but necessary for

our proof to hold. The proof we provide is based on the
equivalence of the two capacity constraints to a constraint
on installation 2 inventory. The same equivalence does not
hold for more than two echelons or when arbitrary lead
times are introduced (but we do not claim that MEBS or
an optimal policy similar to MEBS is not optimal in gen-
eralizations of the model considered in this paper).
The conditions under which Theorem 1 is proven include

X2 − X1 � K1, which cannot be guaranteed if lead times
are permitted at installation 2 unless the base stocks differ
by K1 or less. Especially with long lead times, the base-
stock levels are unlikely to differ by less than K1. Let us
demonstrate the difficulty of echelon 2 lead times with a
simple scenario. Suppose a situation has arisen where the
pipeline inventory leading to installation 2 sums to a level
greater than K1. Now a succession of very low consumer
demand realizations occurs so that installation 1’s pipeline
inventory is sufficient to cater for expected demands, and
no additional orders are placed with installation 2. Inex-
orably, all the pipeline inventory arrives at installation 2
and the installation inventory stock exceeds K1, thus con-
travening the condition X2−X1 �K1 and not allowing the
capacity constraints to be omitted.
The constraint that N = 2 is closely related to the lead-

time restrictions, as demonstrated by Glasserman and Tayur
(1994). Another restriction imposed is that K1 �K2. While
this is representative of many real systems, especially
where we can also imbed this two-stage system in longer
systems of a specific type (see §4.3.3), it is worth consid-
ering the opposite for the two-stage system, i.e., K2 < K1.
A numerical example in §4.3.4 illustrates a behavior with
multiple “plateaus” for each echelon, which does not
resemble MEBS policy.
It is interesting to note that our MEBS policy may be

interpreted as a special case of generalized kanban policies.
Axsäter and Rosling (1993) described kanban policies as a
special case of base-stock policies. Such a characterization
holds when considering the chance of backorders as being
extremely low. However, Veatch and Wein (1994) show that
there do exist cases when kanban and base-stock policies
perform significantly differently. Later, Axsäter and Rosling
(1999) extend their previous classification of inventory poli-
cies and allow kanban-like constraints to be imposed on
top of base-stock policies. The MEBS policy proposed here
is a special case of their structure. It is also the same
as that described in Buzacott and Shanthikumar (1992).
The relationship with the results of Veatch and Wein is the
most interesting. As noted in §1, Veatch and Wein (1994)
consider a capacity-limited, two-installation serial system
under the assumptions of exogenous Poisson demand and
controllable production rates. Using simulation, they find
that kanban policies tend to be superior (although not nec-
essarily optimal) to base-stock policies when the down-
stream installation is the bottleneck. When the bottleneck
is at the upstream installation, base-stock policies are supe-
rior. While the setting modeled in their paper differs from
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our model, the spirit of the heuristic is the same—limit the
inventory at the upstream installation. While kanban policy
seems to be superior in continuous settings with Poisson
arrivals, we find that a generalized kanban policy is opti-
mal in a discrete-time general-demand setting. It is also
important to note that kanban systems—sometimes justi-
fied as a suboptimal inventory policy but a good incentive
mechanism—in situations we consider, actually are exact
applications of the optimal inventory policy.
Despite the specific assumptions we make in this paper,

some generalizations are possible. In §§4.3.1 and 4.3.2 we
show, among other things, how some of the lead times
can be incorporated and that the MEBS policy is opti-
mal in a Markov-modulated demand model. Clearly, the
optimal base-stock levels will fluctuate according to the
Markov-chain state and inventory levels above base-stock
levels may occur given such fluctuations. In addition, §4.3.3
demonstrates how our core results may be applied in other
supply chain configurations.

4.3. Extensions

4.3.1. Lead Times. The core model has no lead times,
other than those that occur through the natural dynamics
of the supply chain. Here we expand the model to include
analysis of delivery lead times.
We assume that the holding cost is constant throughout

the pipeline at the level of the higher installation. We could
choose a separate pipeline holding cost, higher than h2 but
lower than �h1 + h2�, to reflect the reality that additional
costs have been incurred by this delivery (e.g., transporta-
tion cost, insurance coverage, etc.), but the value-added
costs at the delivery destination have yet to be incurred.
(Analytically, any linear holding cost for pipeline inventory,
even outside the interval �h2� h1+h2�, can be incorporated
into the model. This would not, however, add particular
insight into the inclusion of lead times into the core model.)
Consider, as before, a two-stage multiechelon inventory

system with capacity limits K1 � K2. There is a delivery
lead time of (integer) " periods from installation 2 to instal-
lation 1. Installation 2 has no lead times. Let

ãn = �a1n+1� a
1
n+2� � � � � a

1
n+"��

The transition equations are

x1n−1 = x1n + a1n+" −Dn� x2n−1 = x2n + a2n − a1n�

Let the pipeline inventory costs be h2 per unit. Installation 1
assumes the cost of the stock, h1+h2, once it arrives at the
site. The systemwide inventory at the end of period n is

x2n + a2n + a1n+1 + a1n+2 + a1n+3

+ · · ·+ a1n+"−1 + (x1n + a1n+" −Dn)
+

=X2
n + a2n − x1n − a1n+" + (x1n + a1n+" −Dn)

+�

We account for all costs when they occur except for the
costs at installation 1. (This is similar to the development
of Federgruen 1993.) At installation 1 the costs are incurred

in the period in which the order is delivered, i.e., " periods
after the order is triggered and, therefore, are discounted
by �" to bring the costs back to the ordering period. The
cost equations become

h2�X
2
n + a2n�−�"h2Ɛ

[
x1n + a1n +

"∑
i=1

�a1n+i −Dn−i�

]

+�"Ɛ

{
�h1 +h2�

[
x1n +

"∑
i=0

�a1n+i −Dn−i�

]+

+p

[
−x1n −

"∑
i=0

�a1n+i −Dn−i�

]+}

= h2�X
2
n + a2n�−�"h2Ɛ�X

1
n + a1n −D�"�

n �

+�"Ɛ
{
�h1 +h2�(X

1
n + a1n −D�"+1�

n )+

+p(D�"+1�
n −X1

n − a1n)
+}

=# L2�X2
n + a2n�+L1�X1

n + a1n��

where X1
n #= x1n +

∑"
i=1a

1
n+i and X2

n #= x1n + x2n +
∑"

i=1a
1
n+i.

D�j�
n is the convolution of the demand random variable over

j periods; the expectation operators apply to these convo-
lutions. Evidently, the terms X1

n + a1n and X2
n + a2n are iso-

lated and can be labeled Y 1
n #=X1

n +a1n and Y 2
n #=X2

n +a2n,
respectively. The action set for this model is

��x1n�x
2
n�ãn�=

{
a1n�a

2
n �0�a1n�K1�a

1
n�x2n�0�a2n�K2

}
or equivalently

��X̃n�=
{
Ỹn ∈�2 �X1

n � Y 1
n �X2

n � Y 2
n �X2

n +K2�

Y 1
n �X1

n +K1

}
�

With respect to the dynamic programming recursion, the
last " periods will be constants because no decisions made
in those periods will have any cost effects during the time
remaining. Note that we continue to have X2

n−1 − X1
n−1 =

x2n−1 = Y 2
n − Y 1

n , and the basis upon which Corollary 1 sits
remains valid: It is unprofitable to order up to an amount
above a level of K1 at installation 2 because installation 1
cannot order any more than this amount in a single period.
Formal translation of the lead-time model to the original
model is as follows:

Definition 4 (Lead-Time Model).

Vn�X̃n�= min
Ỹn∈��X̃n�

Jn�Ỹn�� (13)

Jn�Ỹn�=
{
L1�Y 1

n �+L2�Y 2
n �+�ƐDn

Vn−1�Ỹn −Dn�
}
� (14)

where

��X̃n�=
{
Ỹn∈�2 �X1

n�Y 1
n �X2

n�Y 2
n �X2

n+K2�

Y 1
n �X1

n+K1

}
�

L2�Yn�=h2�Yn��

L1�Yn�=−�"h2Ɛ�Yn−D�"�
n �

+�"Ɛ��h1+h2�(Yn−D�"+1�
n )++p(D�"+1�

n −Yn)
+ �
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The proof of the following theorem is identical to that
of Theorems 1 and 2.

Theorem 4. The lead-time model follows the MEBS policy
for the conditions stated in Theorem 1.

4.3.2. Markov-Modulated Demand. Consider a
Markov-modulated demand. That is, there are M states with
Markovian transitions in matrix P and a demand distri-
bution associated with each of the states. Chen and Song
(2001) show that demand-distribution-dependent echelon
base-stock policies are optimal for an uncapacitated serial
multiechelon system facing nonstationary demands. Their
proof was necessarily complicated by the fact that they
were illustrating an algorithm that had desirable economic
interpretations. We now demonstrate a similar result, but
use the decomposition proof used in previous sections.
In the Markov-modulated demand model, the demand

expectation is augmented by pmm′ , the probability that the
next state will be m′ given the current-period state is m.

Definition 5 (Markov-Modulated Model). The value
function of the nonstationary demand model is

Vn�X̃n�m�=min
Ỹn∈�




N∑
i=2

N∑
j=i

hj�Y
i
n−Y i−1

n �

+∑
m′

pmm′ƐDm′

[ N∑
j=1

hj�Y
1
n −Dm′�+

+p�Dm′ −Y 1
n �

+
]

+�
∑
m′

pmm′ƐDm′Vn−1�Ỹn−Dm′ �m′��




(15)

where

��X̃n�=
{
Ỹn �Xi

n � Y i
n �Xi+1

n � Y i
n −Xi

n �Ki�

i= 1� � � � �N − 1.XN
n � Y N

n �XN
n +KN

}
�

m ∈ �1�2� � � � �M is the state of the Markov chain. It
is easy to verify that Corollary 1(a) remains valid for
this model (because it does not require that the realiza-
tions be drawn from the same distribution). It is possible
to demonstrate that the MEBS policy is optimal for this
model. Because the proof is very similar to the proofs of
Theorems 1 and 2, it is omitted here.

Theorem 5. Assume that the conditions stated in Theorem 1
hold. For the nonstationary demand model for N = 2, the
MEBS policy is optimal. The parameters of the optimal
MEBS policy depend, however, on both the period number
and state of the system.

4.3.3. Other Capacity Conditions. While the assump-
tion that the lowest installation must have the lowest
capacity level may appear restrictive, there exist other sit-
uations for which a base-stock ordering policy is opti-
mal. It can be easily demonstrated that a base-stock policy

remains optimal for (a) a serial multiechelon system where
only the two highest installations have capacity constraints
KN−1 �KN �� with general lead times permitted at all
stages except the highest installation, and (b) a serial multi-
echelon system, with general lead times at all installations,
where the only capacity restriction is at the uppermost
installation, KN <�. These results are summarized in the
following theorem.

Theorem 6. (a) Consider an N -stage system without
capacity limits at stages j < N − 1 and finite capac-
ities KN−1 � KN < �. Under the inventory condition
XN

n −XN−1
n �KN−1, Vn�X̃n� =

∑N
j=1 V

j
n �X

j
n�. The optimal

policy is as follows: MEBS holds for the capacitated instal-
lations and the remaining installations follow an echelon
base-stock policy.
(b) Consider an N -stage system without capacity lim-

its at stages j < N and finite capacity KN . For this sys-
tem, Vn�X̃n�=

∑N
j=1 V

j
n �X

j
n�. An echelon base-stock policy

is optimal for this system.

Proof. See the appendix.

Now consider an N -stage system with capacity limits
at each stage and identical holding costs. Note that when
holding costs for all installations are equal, the problem
becomes very easy—for all stages 1< i�N , one cannot be
worse off by forwarding the inventory to echelon 1. Thus,
the system is equivalent to a one-stage capacitated system
with lead time N , for which optimal policy is a modified
base-stock (MBS) policy.

Corollary 2. Consider an N -echelon model with instal-
lation holding costs Hi = h1 for all i and K1 � Kj for all
j > 1. The optimal policy is MBS.

4.3.4. Lower Capacity at the Higher Echelon: K2 <
K1. Considering that we have dealt with the K2 � K1

configuration in the N = 2 case, the obvious question is
whether base-stock policies are optimal in the K2 < K1

configuration. Table 2 contains a numerical counterexam-
ple detailing the optimal orders for a number of starting
inventory positions. This 10-period example is achieved
with the following parameter values:

K1=11� K2=10� c=0� r=0� p=10�

h1+h2=1� h2=0�05� �=0�9� Pr�D=2�=0�1�

Pr�D=3�=0�2� Pr�D=9�=0�25� Pr�D=10�=0�1�

Pr�D=13�=0�2� Pr�D=18�=0�1� Pr�D=22�=0�05�

The mean demand for this distribution is 9.55, which is
less than the lowest capacity level, K2 = 10.
It appears that echelon 1 is striving to order up to levels

of 22, 23, and 24, while echelon 2 appears to be trying to
reach levels of 43, 47, 48, and 49 (not shown). If this does
demonstrate a base-stock policy, it is one more ornate and
intricate than we can envision.
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Table 2. Counterexample for K2 <K1 in the N = 2
case.

Initial Initial Ending
installation echelon Installation echelon
inventory inventory orders inventory

x1 x2 X1 X2 a1 a2 Y 1 Y 2

10 15 10 25 11 10 21 35
11 15 11 26 11 10 22 36
12 15 12 27 10 10 22 37
13 15 13 28 10 10 23 38
14 15 14 29 9 10 23 39
15 15 15 30 9 10 24 40
16 15 16 31 8 10 24 41
17 15 17 32 7 10 24 42
18 15 18 33 6 10 24 43
· · · · · · · ·
24 15 24 39 0 4 24 43
25 15 25 40 0 3 25 43
26 15 26 41 0 3 26 44
27 15 27 42 0 3 27 45
28 15 28 43 0 3 28 46
29 15 29 44 0 3 29 47
30 15 30 45 0 2 30 47
31 15 31 46 0 2 31 48
32 15 32 47 0 1 32 48

4.3.5. Effect of Variance upon Costs and Recom-
mended Capacity Levels. In this subsection, we illustrate
the effect demand variance may have upon costs and opti-
mal capacity levels with a numerical example. We numer-
ically solve the system with a discrete demand distribution
for various coefficients of variation. As expected, the costs
at the best operating level4 increase with the coefficient of
variation and, as K1 increases (maintaining the condition,
K1 �K2), this best operating level cost also decreases in a

Figure 4. The effect of increasing capacity and the coefficient of variation on the best operating level.
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convexlike manner—see Figure 4. The parameters used for
this example are p= 5, h1 +h2 = 1, h2 = 0�5� r = 0� c= 0�
and � = 0�9, with K1 ∈ �10�11�12�15�20 . The demand
distributions were designed so that the mean was kept at 9.8
and the coefficient of variation was 0.1, 0.2, and 0.4. Using
these data, the algorithm was run until the difference of suc-
cessive value functions was less than 0.005. This resulted in
horizon lengths that differed for different K1s and demand
distributions. A summary of these horizon lengths appears
in Table 3.
Consider the three curves denoting the best operating-

cost curves for three levels of coefficient of variation (cv).
We observe that doubling the cv from 0.1 to 0.2 has a
smaller effect upon costs than doubling the cv from 0.2
to 0.4, and safety stocks are not proportional to standard
deviations, as they are for one-stage systems. Lastly, the
percentage labels in Figure 4 indicate the percentage cost
above the uncapacitated system. Confirming intuition, the
number of units of additional capacity required to get
within 1% of uncapacitated costs is smaller for systems
with less variance.
Now, given an appropriate capacity acquisition-cost

function, we can draw conclusions about optimal one-time
capacity investment. Two elements of such a cost function
could be a fixed part (independent of the level of K1) and
a variable part (dependent on K1). If the variable part is
convex increasing (including a linear function), then clearly
the sum of the best operating-cost function (Vn) and the
capacity acquisition costs is also convex in K1 with a finite
minimizing point, K∗

1 , and recommendations about optimal
capacity investments to minimize total costs (operating and
investment costs) may be made.
The method of numerical computation is based on

the value-iteration algorithm. The analytical results offer
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Table 3. Example of horizon length required for the
convergence of up-to levels.

Horizon length for

Capacity cv= 0.1 cv= 0.2 cv= 0.4

10 33 33 38
11 31 29 33
12 31 29 31
15 31 29 31
20 31 29 31

additional opportunities for computational efficiencies.
Namely, the convexity result permits us to search for the
minimums efficiently, while Lemma 1 enables us to restrict
the search to a subset of the state space, the band. Using
a zero salvage value function and a discretized state space,
the convexity of the value function is exploited to deter-
mine the optimal decisions.

5. Infinite-Horizon Results
In this section, we demonstrate that the key results found
for the finite-horizon model in §4 also hold for the infinite-
time horizon. Federgruen and Zipkin (1984) extend the
decomposition of Clark and Scarf (1960) into separate
echelon-based dynamic programs and show that the opti-
mal policy holds for the infinite horizon by demonstrat-
ing it for each of the decomposed programs. We show
that the original combined finite-horizon model described
in §4 converges in cost and policy in the infinite hori-
zon. For notational simplicity we demonstrate these for
the basic model, but the same results can be derived for
the extensions described in §4.2. (The results achieved in
Federgruen and Zipkin 1984 could be achieved more easily
using the techniques illustrated here. The closure is eas-
ily demonstrated by bounding the optimal base-stock lev-
els. Despite not having natural bounds as in case of the
capacitated problem, Theorem 8 below establishes a bound
on undominated target levels, and the problem can be trans-
lated into an equivalent one with the feasible actions limited
to the states within this bounded area.) In this section, we
additionally assume that ƐD <K1.

5.1. Discounted Cost

Let 0 � � < 1. Consider the following infinite-horizon
cost for policy /, which defines the order quantities, ai

k,
i ∈ �1� � � � �N  :

V/�X̃0�

=
�∑

k=1
�k−1ƐDk




H1�x
1
k+a1k−Dk�

++p�Dk−x1k−a1k�
+

+
N∑
i=2

Hi�x
i
k+ai

k−ai−1
k �


�

where x
j
k+1 = x

j
k − a

j−1
k + a

j
k for j > 1, x1k+1 = x1k +

a1k − Dk, Hi =
∑

j�i hj (as defined before), and all other

dynamic relationships are as before. (Note that we count
time forward in this section, using k rather than n.) Let us
define the minimal infinite-horizon cost as

V ∗�X̃�= inf
/

V/�X̃��

Theorem 7. The finite-horizon function, Vn, converges to
a finite-valued infinite-horizon counterpart; that is,

V ∗�X̃�= lim
n→�Vn�X̃� <� for all X̃ ∈ S�

Proof. The cost of any feasible policy in the infinite hori-
zon is bounded from above,

V/�X̃0�=
�∑

k=1
�k−1ƐDk

[ N∑
i=2

Hix
i
k +

N∑
i=2

hia
i
k −H2a

1
k

+H1�x
1
k + a1k −Dk�

+

+p�Dk − x1k − a1k�
+
]

�

�∑
k=1

�k−1ƐDk

[ N∑
i=2

Hix
i
k +

N∑
i=2

hia
i
k

+H1��x1k + a1k −Dk��

+p��Dk − x1k − a1k��
]

�

�∑
k=1

�k−1
[ N∑

i=2
Hi�x

i
0 + kKi�+

N∑
i=2

hiKi

+H1��x10� + kK1�+p��x10� + kƐD�

]
<��

The bounds are justified based on
∑�

k=1k�
k=�/�1−��2

<�,
∑�

k=0 �
k = 1/�1−�� <� for �< 1, and the assump-

tion that ƐD <�, and are independent of policy /. Clearly,
the value of the optimal policy, if it exists, is also bounded.
Now consider the set

�n�X̃�"�= {
Ỹ ∈��X̃� � ƐD(L�Ỹ �+�T nV0�Ỹ −D�)� "

}
�

where T is the one-period mapping denoted by (1) and (2).
We have Vn = T Vn−1 = T nV0. Because ��X̃n� is bounded,
�n must be bounded. The function in the expectation is
continuous in Ỹ (from the continuity of finite sums; see
§4.1) and ��X̃n� is closed. Therefore, �n must be closed.
Based on boundedness of values and the fact that �n is
closed, invoking Proposition 1.7 of §3.1 of Volume II of
Bertsekas (1995) (equivalently, Bertsekas and Shreve 1996,
Proposition 9.17),

lim
n→�Vn�X̃�= V ∗�X̃� for all X̃ ∈ S� �

We are interested as to whether the optimal policy from
the finite-horizon problem converges to the optimal policy
for the infinite horizon.
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Theorem 8. (a) There exists a finite upper bound on inven-
tory targets for V �X̃�, which is independent of � ∈ �0�1);
and (b) there exists a finite upper bound on inventory tar-
gets for ƐV �Ỹ −D�, which is independent of � ∈ �0�1).

An inventory target is any Y �X� >X (i.e., an up-to level
where we actually increase inventory).

Proof. See the appendix.

Theorem 9. The optimal policy for the finite-horizon func-
tion, Vn, converges to its infinite-horizon counterpart. Con-
sequently, Ỹ ∗ = limn→� Ỹ ∗

n exists, and Ỹ ∗ minimizes V ∗�·�.
Proof. In Theorem 7, we demonstrated that there exists
V ∗�X̃� = limn→� Vn�X̃� ∀ X̃ ∈ S, which in turn implies
J �Ỹ � #= limn→� Jn�Ỹ � for all Ỹ ∈ ��X̃�. The limit exists
because, from Property 1(c) in §4.1, Jn+1�Ỹ � � Jn�Ỹ � for
each n and Ỹ ∈ ��X̃�, and, from Theorem 7, Jn+1�Ỹ � are
bounded. ��X̃� is convex and compact ∀X̃ ∈ S, and Jn�·� is
convex (see Property 1(a) in §4.1). The proof of Theorem 8
verifies that the optimal base-stock levels are bounded, and
hence so are the optimal decisions. Consequently, all the
conditions of Theorem 8–15 in Heyman and Sobel (1984)
are satisfied and we get

Ỹ ∗ = lim
n→� Ỹ ∗

n exists and Ỹ ∗ = argminV ∗�·�� �

Corollary 3. The modified echelon base-stock policy is
optimal in the discounted-cost infinite-horizon setting in the
N = 2 system when K1 � K2 and the beginning inventory
satisfies X2 −X1 �K1.

Proof. Theorem 9 demonstrates that the optimal decisions
converge in the infinite horizon. However, we must also
establish that the base-stock levels also converge. Because
the base-stock levels are monotonically nondecreasing in n
(Theorem 3) and they are bounded (Theorem 8), z̃n con-
verge (due to pointwise convergence). From Theorem 9,
this results in the MEBS policy structure being optimal in
the discounted-cost infinite horizon. �

Note that other than ƐD <K1, there have been no addi-
tional restrictions on the demand distributions to demon-
strate that the MEBS policy extends to the infinite horizon.
To numerically evaluate these models, due to the analytical
results of Theorem 9, we can use value-iteration algorithms
until the differences of the value functions converge to a
predefined quantity.
The case of Markov-modulated demand may be easily

extended to the infinite horizon. As for the finite-horizon
case (§4.3.2), the cost function depends additionally on
the state m ∈ �1�2� � � � �M of the underlying Markov
chain. All theorems within this section continue to hold.
For Theorem 8 to apply, the underlying Markov chain
needs to be ergodic, each demand distribution must satisfy
0< ƐDm <� for all m, and

∑
m pmƐDm < K1, where pm

is the long-term probability for state m. Theorems 7 and 9
are easily modifiable.

5.2. Average Cost

In this section, we demonstrate that the base-stock policy
structure, optimal for the discounted expected cost model,
is also optimal under an expected average-cost criterion in
the infinite horizon. To satisfy this, the state space is now
the set of all integers, and therefore the action space for
each initial inventory is finite. We also assume that the
demand is i.i.d. nonnegative and integer and Ɛ(D2) < �.
The previous results remain valid for this more restric-
tive model. Note that for problems that have finite state
and action spaces, demonstration of the convergence of the
discounted-cost optimal policy to the average-cost case is
quite standard (see Sennott 1989, 1999; Bertsekas 1995).
Due to the inclusion of backlogging of unsatisfied demand,
we cannot assume a finite state space, or bound the state
space. Whereas the discounted-cost model has infinite non-
denumerable state sets, we assume infinite denumerable
state sets in the average-cost model. This is different than
Federgruen and Zipkin (1984), who do not require discrete
demand, except for the computation of the optimal policies.
Discreteness of demand does simplify the analysis, and
our proof does apply directly to a capacitated single-stage
case analyzed by Federgruen and Zipkin (1986a), who also
assume discrete demand. (For the uncapacitated case, how-
ever, to bound the inventory at a higher installation, instead
of K1, a bound based on Theorem 8 needs to be used.)
There exist a few versions of sufficient conditions that

guarantee the convergence for the average-cost criterion—
see Sennott (1999) for an excellent review. We focus on the
conditions in Schäl (1993), which are based on the opti-
mal discounted value function for an infinite-state Markov
decision process with unbounded costs.
Schäl (1993) suggests two sets of sufficient conditions

for the convergence of the optimal discounted value func-
tion and policy to the average-cost equivalents. We use the
first set, which consists of two conditions. The first con-
dition is straightforward. To satisfy the second condition,
some notation is useful. For the sake of clarity, the infinite-
horizon value function under the discounted-cost criterion
is now labeled V�.

3�/� X̃� #= average cost of policy / given state X̃.
4 #= set of randomized policies.
g #= inf X̃∈S inf/∈4 3�/� X̃� <�.
m� #= inf X̃∈S V��X̃�.
V ��X̃� #= inf Ỹ∈��X̃� ƐV��Ỹ −D�.

m� #= inf X̃∈S V ��X̃�.
Schäl’s second condition is the following:

(B) sup
�<1

w��X̃� <� for X̃ ∈ S�

where w��X̃� #= V��X̃�−m�.
Let us restate a lemma from Schäl (1993), rephrased with

our notation and simplified (general 6� 0 is replaced with
6 = 0). Use of this lemma allows us to bound w��X̃� in
condition (B).
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Lemma 3 (Schäl 1993). For �< 1, X̃ ∈ S:

w��X̃�� inf
/∈4

ƐX̃n� /

[7−1∑
n=0

L�X̃n�+L�8��X̃7��

]
�

where 8� is the policy minimizing ƐV��Ỹ − D�, X̃0 = X̃,
and X̃n is the inventory position n periods later, when pol-
icy / is used and random variable 7 is any upper bound
on 7� #= inf�n� 0��V ��X̃n��m� .

The following theorem is the main result of this section.

Theorem 10. There exists a stationary policy /∗ that is
average optimal in the sense that 3�/∗� x� #= lim supn→�
�1/n�ƐX̃� /∗ (

∑n−1
m=0 L�X̃m�) = inf X̃∈S inf/3�/� X̃� =# g for all

X̃. /∗ is limit discount optimal in that for any X̃ ∈ S for
all � ↗ 1 such that /∗�X̃� = lim�↗1 /

∗
��X̃�. Additionally,

g = lim�↗1�1−��m� = lim�↗1�1−��V�.

The underlying idea of the proof is to show that for any
starting point and any discount factor �, the extra cost for
not starting at the “best” point is bounded and the bound
is independent of the discount factor. The proof of this
theorem consists of several steps. Utilizing Lemma 3, we
establish a finite upper bound on the relative cost difference
on its right-hand side. The bound is determined by con-
structing an alternative policy that deliberately visits every
point within a finite subset of the state space in which the
optimal base-stock levels are guaranteed to reside. The cost
of the policy, while reaching each of the points, is an upper
bound on the cost until the optimal point is reached. We
show that the cost of this policy is finite and that the bound
is independent of �. The complete proof is in the online
appendix at http://or.pubs.informs.org/pages/collect.html.
As for the discounted cost infinite-horizon section,

numerical evaluation of the average cost may be achieved
using the value-iteration algorithms (see, for example,
Puterman 1994), justified by the results in this section.
Markov-modulated demand requires a simple modification,
adding the state of the underlying Markov chain, and a con-
nectiveness requirement similar to that in Kapuscinski and
Tayur (1998).

6. Conclusions
We have analyzed a two-echelon supply chain with capacity
constraints. Under quite general conditions—lower capac-
ity at the lower installation—we have shown that the cost
function can be decomposed into echelon-dependent com-
ponents, which leads to full characterization of the optimal
inventory policy. The optimal policy, the modified echelon
base-stock (MEBS) policy, is straightforward to describe;
the lower installation attempts to reach a base-stock level,
if possible, as it is constrained by capacity, K1, and avail-
ability of stock at its immediate supplier, installation 2.
Echelon 2 also attempts to reach a base-stock level, but is
limited by installation 1’s capacity. That is, the optimal ech-
elon ordering decisions are restricted to the “band,” � .

The result of this is that there are “induced penalty func-
tions” applied to the system once the value function is
decomposed. These induced penalty functions are analo-
gous to those of Clark and Scarf (1960), except that each
installation receives a separate function. Echelon 1 accrues
an induced cost for potentially limiting the system by pos-
sessing the bottleneck operation. Echelon 2 accrues an
induced cost for potentially not providing sufficient mate-
rials to keep its immediate customer sufficiently stocked.
We extend this structural result to models incorporating

lead times, Markov-modulated demand (which may have a
variety of nonstationary demand processes imbedded into
it), and to other system configurations. We also extend the
main result to the infinite-time horizon for discounted-cost
and average-cost criteria. This is done without significant
restrictions upon the demand process.

Appendix. Additional Proofs
Lemma 1. Let K1 �Kj . For any X̃n all optimal Ỹn satisfy
yj
n �max�K1� x

j
n − aj−1

n � for j > 1.

Proof. Assume that there exists an optimal policy 9, such
that for certain n and j , yj

n >max�K1� x
j
n − aj−1

n �. Without
loss of generality, we choose minimal n and j , i.e., assume
that n is the shortest horizon for which there exists such
a j , and for that n, j is the smallest among the candidate
installations. Let 9 ′ be an alternative policy such that aj ′

n =
aj

n − 1 and a
j ′
n−1 = a

j
n−1 + 1, but otherwise follows policy

9. Clearly, x�j+1�′
n−1 = x

j+1
n−1 + 1 and x

j ′
n−1 = x

j
n−1 − 1.

Because 9 is optimal, it is feasible. Before comparing
the costs of the two policies, we need to check the feasi-
bility of 9 ′. It is easy to justify that the sufficient condi-
tions are: (i) aj ′

n � Kj , (ii) aj ′
n � xj+1

n , (iii) a
j ′
n−1 � x

�j+1�′
n−1 ,

(iv) a
j−1
n−1 � x

j ′
n−1, and (v) a

j ′
n−1 �Kj .

Because aj ′
n < aj

n � Kj , we get (i). Because aj ′
n < aj

n �

xj+1
n , we get (ii).
(iii) a

j ′
n−1 = a

j
n−1 + 1� x

j+1
n−1 + 1= x

�j+1�′
n−1 .

(iv) x
j
n−1 = yj

n > K1 implies x
j ′
n−1 = x

j
n−1 − 1 � K1 �

a
j−1
n−1.
(v) x

j
n−2 = x

j
n−1 − a

j−1
n−1 + a

j
n−1 = x

j ′
n−2 = x

j ′
n−1 − a

j−1
n−1 +

a
j ′
n−1 and (from (iv)), a

�j−1�′
n−1 � x

j ′
n−1, so x

j ′
n−1 − a

�j−1�′
n−1 � 0.

Thus, aj ′
n−1 �K1 �Kj .

The difference in cost between the policies is

Cost�9�−Cost�9 ′�=
( N∑

i=j

hi

)
�x

j
n−1 − x

j ′
n−1�

+
( N∑

i=j+1
hi

)
�x

j+1
n−1 − x

�j+1�′
n−1 �

=
( N∑

i=j

hi

)
�aj

n�+
( N∑

i=j+1
hi

)
�−aj ′

n �

= hj�1� > 0�

which is a contradiction with optimality of 9. �
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Theorem 2. The modified echelon base-stock policy
(MEBS), with parameters �z1n� z

2
n� defined above, is optimal

for an N = 2 system where K1 �K2 and X2 −X1 �K1.

Proof. Theorem 1 states that the value function of the sys-
tem is separable into individual value functions, each depen-
dent upon the echelon starting inventory. It also states that
each of these separate value functions is convex with (unre-
stricted) minima at +n and z2n. In addition, Corollary 1(a)
states that for these conditions, Y 2 − Y 1 �K1 for optimal
Y 1 and Y 2. There are two possible cases: (a) z2n − +n �K1

and (b) z2n − +n >K1.
(a) In this case, the global minimizing point is within the

band � and �z1n� z
2
n�= �+n� z

2
n�. Depending upon the start-

ing inventory, this point may not always be achievable. If
X1 � z1n �X2, then we would order to z1n; if z

1
n lies beyond

these limits, we would order the closer limit due to the
aforementioned convexity. Likewise, if X2 � z2n � Y 1 +K1,
we would order up to z2n. However, if z2n lay outside these
limits, we would choose the closer limit due to the con-
vexity of the function. Therefore, MEBS is optimal for
case (a).
(b) z2n − +n > K1. Due to the result of Corollary 1(a),

Y 2 � Y 1 +K1. Now, because z2n − + > K1, and due to the
joint convexity and separability, there will exist z1n such
that +n � z1n � z2n −K1, which minimizes the value function
along �Y 1� Y 1+K1�. The minimizing z1n occurs within this
interval using the following logic. Jn is convex decreasing
in Y 1 � +n and convex decreasing in Y 2 � +n +K1, imply-
ing that Jn�Y

1� Y 1 +K1� is convex decreasing in Y 1 � +n.
Similarly, Jn is convex increasing in Y 1 � z2n−K1 and con-
vex increasing in Y 2 � z2n, implying that Jn�Y

1� Y 1+K1� is
convex increasing in Y 1 � z2n−K1. When X1 � z1n �X2, the
minimizing point �z1n� z

1
n+K1� is reachable. When X2 < z1n,

the convexity implies that the point �X2�X2 + K1� gives
the lowest cost under the constraint set. �z1n� z

2
n� may not

always be achievable; this point will not be achievable if
z1n < z2n −K1. If X1 > z1n, the lower installation will order
nothing, Y 1 =X1; echelon 2 will order up to either X1+K1

or z2n, whichever is the smaller, due to the convexity. Thus,
MEBS is optimal for case (b). �

Theorem 6. (a) Consider an N -stage system without
capacity limits at stages j < N − 1 and finite capacities
KN−1 � KN . Under the inventory condition XN

n − XN−1
n �

KN−1, Vn�X̃n�=
∑N

j=1V
j
n �X

j
n�. The optimal policy is as fol-

lows: MEBS holds for the capacitated installations, and
the remaining installations follow an echelon base-stock
policy.
(b) Consider an N -stage system without capacity lim-

its at stages j < N and finite capacity KN . For this sys-
tem, Vn�X̃n� =

∑N
j=1V

j
n �X

j
n�. An echelon base-stock policy

is optimal for this system.

Proof. (a) The form of this proof follows similarly to that
of Theorem 1, but the bottleneck is found at echelon N −1.
Invoking Lemma 2, the sequence of decomposition of the

value function begins from echelon 1. The proof mirrors
that of Clark and Scarf (1960) up until echelon N − 2. At
this point, the value functions for these installations are
similar to those in Theorem 1, and the proof is identical
from this point onward. We utilize Corollary 1(a) for these
final two installations, because the decomposition of instal-
lation N − 2 from installations N − 1 and N merely adds
a convex function to the value function for the final two
installations. (Essentially, it is shown that the decomposed
dynamic programs for all echelons contain induced penalty
functions for potentially not supplying enough material,
and echelon N − 1 has the additional induced penalty cost
for limiting the ability of echelon N to reach a desirable
inventory level as a result of the capacity limitation, KN−1.)
The optimality of the inventory policy follows from the fact
that the convexity of each of the individual value functions
of the lowest N − 2 installations implies that an echelon
base-stock level is desirable, identical to that of Clark and
Scarf (1960). The optimal policy of the final two installa-
tions follows identically from Theorems 1 and 2.
(b) The proof of this element of the theorem is even

simpler because the imposition of a capacity limitation
upon echelon N can be incorporated into the original Clark
and Scarf (1960) proof without any problem. This can
be viewed from the perspective of the constraints upon
the echelon order-up-to decision variables, Y j for j ∈
�1�2� � � � �N  . The upper bound of each decision variable
except the highest echelon is the stock availability at the
next higher echelon; that is, Xj � Y j �Xj+1 for j < N . The
limitation upon echelon N is the capacity limitation, XN �

Y N �XN +KN . The proof continues as in Clark and Scarf
(1960), decomposing the dynamic program from the lowest
echelon to the highest. Once the highest echelon is reached,
the resulting dynamic program is a convex operand being
minimized with the decision variable Y N bounded between
XN and XN + KN ; that is, it is a function of XN only.
Consequently, the structure of the optimal policy is identi-
cal to that of Clark and Scarf (1960), namely an echelon
base-stock policy, although the actual base-stock levels will
differ from those of Clark and Scarf. �

All the proofs for Technical Lemmas A1, A2, A3, and
A4 appear on the Operations Research website at http://
or.pubs.informs.org/pages/collect.html.

Lemma A1. Consider two functions, J A and J B, each
jointly convex and separable in their variables, Y 1 and Y 2,
which satisfy

<

<Y 1
J B�Ỹ ��

<

<Y 1
J A�Ỹ � and

<

<Y 2
J B�Ỹ ��

<

<Y 2
J A�Ỹ ��

If KB <KA, then z1A � z1B.

Lemma A2. Let an N = 2 supply chain with K2 �K1 oper-
ate under a base-stock policy with levels z̃ such that z2 −
z1 = K1, and let X̃ � z. If the lower echelon base-stock
level is reached, then the upper echelon can also achieve
its base-stock level in the same period.
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Lemma A3. Consider an N -stage serial supply chain oper-
ating under a MEBS policy, where zj − zj−1 = K1

and Kj �K1 for all j > 1. Assume for a given period
Xj − Xj−1 = K1 for all j > 1. Then, (a) Xj −Xj−1 =K1

for all j > 1 in all future periods, and (b) once
z1 −K1 �X1 � z1, then z̃ is reachable in a single period for
all echelons.

Lemma A4. Consider an N -stage serial multiechelon sys-
tem with capacity limits of Ki � K1 at stage i and 0 <
Ɛ(D) <K1. Consider the echelon base-stock policy, 9�K�,
ordering up to �i − 1�K1 at echelon i. Define T as
the random variable representing the number of periods
between subsequent visits to these base-stock levels. Then,
(a) Ɛ(T ) < �, and (b) there exists A ∈ �+, such that
Jn�0�K1�2K1� � � � � �N − 1�K1��An.

Theorem 8. (a) There exists a finite upper bound on inven-
tory targets for V �X̃�, which is independent of � ∈ �0�1),
and (b) there exists a finite upper bound on inventory tar-
gets for ƐV �Ỹ −D�, which is independent of � ∈ �0�1). An
inventory target is any Y �X� >X (i.e., an up-to level where
we actually increase inventory).

Proof. We will show that for any finite-horizon problem
and for any � ∈ �0�1), the finite-horizon up-to levels are
uniformly bounded. The proof for part (b) is similar to that
of part (a) below, but the modified policy defined below
would operate 9�K� for a different number of periods
related to different target inventory levels; however, the
principle of operating for l�k� periods will be the same but
the actual number will differ. This proof follows the stan-
dard type of proof seen in Kapuscinski and Tayur (1998).
Based on Lemma A4, there exists a policy, 9�K�, with
base-stock levels �0�K1�2K1� � � � � �N − 1�K1�, such that
there is a finite expected number of periods until this base-
stock vector is revisited (regeneration).
We demonstrate that there is a finite upper bound on the

optimal base-stock values by contradiction. Assume that
lim sup ỹ∗n =�. Therefore, an increasing sequence nk ∈ N
such that y∗nk

→ � and y∗
nk

> y∗
n for all n < nk. The cost

of following this optimal policy will be compared to an
alternative policy. The alternative, or modified policy, 9m,
is described by operating 9�K� for l�k� periods, followed
by 9, the optimal policy. Let

l�k� #=
⌊
yN∗
nk

− �N − 1�K1

ƐD

⌋
�

where � � denotes rounding down to the nearest integer.
Let m denote the random number of periods defined as

m=min�i ∈N � ỹnk−l�k�−i�9�= ỹnk−l�k�−i�9m� 

or nk − l�k� if such an i does not exist. Using Wald’s
theorem, we can bound Ɛm,

Ɛm�

∑N
i=1y

i∗
nk

K1 − ƐD
�

Now consider the cost of policy 9 for the l�k� periods.
Given that the cost function is convex, we can employ
Jensen’s inequality, so

l�k�∑
i=1

ƐLnk−i�xnk−i�

�

l�k�∑
i=1

[( N∑
j=1

hj

)(
y1∗nk

−
nk∑

j=nk−i+1
ƐD

)

+
N∑

j=2

( N∑
p=j

hp

)
�yj∗

nk
− y�j−1�∗

nk
�

]

=
l�k�∑
i=1

[ N∑
j=1

hj

(
y1∗nk

−
nk∑

j=nk−i+1
ƐD

)
+

N∑
j=2

hjy
j∗
nk

]

� l�k�
N∑

j=2
hjy

j∗
nk

(A1)

�

(
yN∗
nk

− �N − 1�K1

ƐD
− 1

) N∑
j=2

hjy
j∗
nk

=
(
yN∗
nk

ƐD
− �N − 1�K1 + ƐD

ƐD

) N∑
j=2

hjy
j∗
nk

= hN

ƐD

(
yN∗
nk

)2 + N−1∑
j=2

hj

ƐD
yj∗
nk
yN∗
nk

− �N − 1�K1 + ƐD

ƐD

N∑
j=2

hjy
j∗
nk
� (A2)

Inequality (A1) is justified from (a) the definition of
l�k�, and (b) Corollary 1(a). Specifically, it is shown in
Corollary 1(a) that the difference between ending inventory
levels at neighboring echelons higher than echelon 1 will
not be greater than K1. This is then reflected in the defini-
tion of l�k�, where N − 1 units of K1 are subtracted from
echelon N ’s target level; this difference is ensured to be
lower than y1∗nk

, thus justifying (A1).
Let us now focus on (A2). Because y1∗nk

� y2∗nk
� · · · �

y�N−1�∗
nk

� yN∗
nk

(due to state space), the term growing most
quickly as k increases is the �yN∗

nk
�2 term. The coefficient

of this term is positive because hN > 0 and 0< ƐD < K1.
We now have an expression that acts as a lower bound on
operating 9 for l�k� periods. The cost of operating 9�K�
for n periods is bounded above by An (Lemma A4).
Given that policy 9m acts as policy 9 from period

l�k�+ 1 to period l�k� + m, the process operating under
policy 9m is the same process as the process operating
under policy 9 starting from different initial states in
period l�k�+ 1. Glasserman and Tayur (1994) demonstrate
that this process is Harris ergodic if the stability condi-
tion ƐD < K1 � mini Ki (our notation) is satisfied, which
our model does. Consequently, our model admits coupling,
a direct result of the regenerative structure of a Harris
ergodic Markov chain. This means that the processes start-
ing from different initial states will coincide after a finite
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(random) time; that is, m < �. The cost of operating
under either 9m or 9 during these m periods is, therefore,
finite.
The cost of operating policy 9m during periods l�k�+ 1

to l�k�+m consists of penalty and holding costs. Because
9 will be conducted during this interval, the penalty costs
will not be larger than those of policy 9�K�. Similarly,
the inventory levels at echelon 1 achieved during this inter-
val will be lower than the echelon 1 inventories realized
from the original policy, the cost of which forms a bound
on the echelon 1 holding cost. The bound for the hold-
ing costs at higher echelons can be regarded as a con-
stant in every period: Corollary 1(a) demonstrates that
the optimal policy will require no more than K1 units
at these higher installations and, thus,

∑N
i=2

∑N
j=1 hjK1 =

�N −1�
∑N

j=1 hjK1 serves as a bound in each period. There-
fore, the cost of operating 9m during the first l�k� + m
periods is bounded by

A�l�k�+ Ɛm�+ �N − 1�
N∑

j=1
hjK1Ɛm

�A′�l�k�+ Ɛm��A′
( N∑

i=1
yi∗
nk

(
1
ƐD

+ 1
K1 − ƐD

))
�

(A3)

Consequently, the difference in costs between policies 9
and 9m over period l�k�+m is at least (A2) minus (A3),
which is quadratic in yN∗

nk
. So, as k increases, this term

dominates and the cost difference goes to infinity. This sug-
gests that 9m is less costly than 9, contradicting our initial
assumption. �

Endnotes
1. Clark and Scarf (1960) assign ordering decisions to the
end of the current period instead of the beginning of the
following one. This is equivalent to our sequence, which is
more commonly used.
2. Porteus (2002, p. 137) shows a more general result. If
a function f changes sign j < n times, when the Pólya
random variable of order n translates f resulting in g�x� #=
Ɛf �x−X�, then g changes sign at most j times.
3. An exception to this is when the optimal base-stock lev-
els fall more quickly than a particular demand realization
(e.g., when the end of the horizon approaches or when the
demand is nonstationary).
4. The cost at the best operating level is defined as V ∗ #=
minX̃∈� V �X̃�.
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