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Lemma A1 Consider two functions, JA and JB, each jointly convex and separable in their

variables, Y 1 and Y 2, which satisfy ∂
∂Y 1 JB(Ỹ ) ≤ ∂

∂Y 1 JA(Ỹ ) and ∂
∂Y 2 JB(Ỹ ) ≤ ∂

∂Y 2 JA(Ỹ ). If

KB < KA, then z1A ≤ z1B.

Proof Let us define (i ∈ {A,B}): ζi := arg minY 1∈Si J i(Ỹ ) and z2i := arg minY 2∈Si J i(Ỹ ) where

Si = {X̃ ⊂ <2|Y 2 − Y 1 ≤ Ki}. If z2i − ζi ≥ Ki, z1i = arg minY 1 J i(Y 1, Y 1 + Ki); otherwise

z1i = ζi.

There are four immediate cases: (i) z2A− ζA ≤ KA, z2B − ζB ≤ KB; (ii) z2A− ζA > KA, z2B −
ζB ≤ KB; (iii) z2A − ζA ≤ KA, z2B − ζB > KB; and (iv) z2A − ζA > KA, z2B − ζB > KB.

When z2i − ζi > Ki, since z1i = arg minY 1 J i(Y 1, Y 1 + Ki), based on convexity of each of the

components ζi ≤ z1i ≤ z2i −Ki (otherwise moving towards interval (ζi, z2i −Ki) would decrease

cost). From ∂
∂Y 1 JB(Ỹ ) ≤ ∂

∂Y 1 JA(Ỹ ) and convexity, z1A ≤ z1B in cases (i) and (iii). For case

(ii) we note the following facts: z2B − z1B ≤ KB and ζA ≤ z1A ≤ z2A − KA. Then get z1B ≥
z2B − KB ≥ z2A − KB ≥ z2A − KA ≥ z1A since ∂

∂Y 2 JB(Ỹ ) ≤ ∂
∂Y 2 JA(Ỹ ). For case (iv), we

know that z1i = arg minY 1 J i(Y 1, Y 1 + Ki) for i ∈ {A, B}. We consider the slopes along the lines

(Y 1, Y 1 + Ki). We thus attain the following logic from the separability of the functions:

∂

∂Y 1
JA(Y 1, Y 1 + KA) =

∂

∂X1
JA(X̃)|X1=Y 1 +

∂

∂X2
JA(X̃)|X2=Y 1+KA

≥ ∂

∂X1
JA(X̃)|X1=Y 1 +

∂

∂X2
JA(X̃)|X2=Y 1+KB

≥ ∂

∂X1
JB(X̃)|X1=Y 1 +

∂

∂X2
JB(X̃)|X2=Y 1+KB

=
∂

∂Y 1
JB(Y 1, Y 1 + KB)

which implies that z1A ≤ z1B.

Theorem 3 The optimal base-stock levels, z1
n and z2

n, are

(a) non-decreasing in period n; and

(b) increasing in K1 so long as K1 ≤ K2 is maintained.

Proof (a) This proof will demonstrate a dominance of the functional derivatives as follows:

∂

∂Y 1
Jn+1(Ỹ ) ≤ ∂

∂Y 1
Jn(Ỹ ) for Y 1 ≤ z1

n, Y 2 ≤ max(z1
n, z2

n) (1)

∂

∂Y 2
Jn+1(Ỹ ) ≤ ∂

∂Y 2
Jn(Ỹ ) for Y 1 ≤ z1

n, Y 2 ≤ max(z1
n, z2

n) (2)
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∂

∂X1
Vn(X̃) ≤ ∂

∂X1
Vn−1(X̃) for X1 ≤ z1

n, X2 ≤ max(z1
n, z2

n) (3)

∂

∂X2
Vn(X̃) ≤ ∂

∂X2
Vn−1(X̃) for X1 ≤ z1

n, X2 ≤ max(z1
n, z2

n) (4)

In period 1, since the optimal decision for installation 2 is to order nothing, this corresponds to z2
1 =

−∞, and we check for the conditions (1)-(4) for the territory below (z1
1 , z

1
1). We have ∂

∂X1 V0(X̃) =
∂

∂X2 V0(X̃) = 0. For X1 ≤ X2 ≤ z1
1 , V1(X̃) = J1(X2, X2), ∂

∂X2 V1(X̃) ≤ 0 = ∂
∂X2 V0(X̃), ∂

∂X1 V1(X̃) =
∂

∂X1 V0(X̃) = 0 satisfying the basis for (3) and (4). Clearly, for Y 1 ≤ z1
1 ,

∂
∂Y 1 EV1(Ỹ −D) = 0 and so

∂
∂Y 1 J2(Ỹ ) = ∂

∂Y 1 L(Ỹ ) = ∂
∂Y 1 J1(Ỹ ), satisfying the basis for (1). Finally, since ∂

∂Y 2 EV1(Ỹ −D) ≤ 0

for Y 2 ≤ z1
1 , so ∂

∂Y 2 J2(Ỹ ) = h2 + ∂
∂Y 2 EV1(Ỹ −D) ≤ h2 = ∂

∂Y 2 J1(Ỹ ) for Y 2 ≤ z1
1 . This proves the

basis for (2).

For the induction step, assume (1)-(4) hold for n− 1. By demonstrating each of the derivative

dominance conditions, we are establishing that z1
n−1 ≤ z1

n and z2
n−1 ≤ z2

n. We consider the cases

where: I. z2
n−1 − z1

n−1 < K1, and II. z2
n−1 − z1

n−1 ≥ K1.

I. We consider four main cases for examination: (A) z2
n−1 − K1 ≤ z2

n − K1 ≤ z1
n−1; (B)

z1
n−1 ≤ z2

n − K1 ≤ z2
n−1; (C) z2

n−1 ≤ z2
n − K1 ≤ z1

n−1 + K1; and (D) z1
n−1 + K1 ≤ z2

n − K1.

Each case will also consider sub-cases, by starting inventory X̃.

The following logic holds for cases (A), (B), (C), and (D). For X1 ≤ z1
n−1,

∂
∂X1 Vn(X̃) = 0 =

∂
∂X1 Vn−1(X̃) and for z1

n−1 ≤ X1 ≤ z1
n, ∂

∂X1 Vn(X̃) = 0 ≤ ∂
∂X1 Vn−1(X̃). Let us consider case (A) as

representative of cases (A)-(D) and only consider it in depth. (The full proof, which details cases

(A)-(D), may be obtained from the authors.)

When z1
n ≤ z2

n−1, X2 can fall in the following intervals:

X2 < z2
n−1 −K1 Vn(X̃) = Jn(X2, X2 + K1), Vn−1(X̃) = Jn−1(X2, X2 + K1)

∂

∂X2
Vn(X̃) =

∂

∂Y 1
Jn(Ỹ )|Y 1=X2 +

∂

∂Y 2
Jn(Ỹ )|Y 2=X2+K1

≤ ∂

∂Y 1
Jn−1(Ỹ )|Y 1=X2 +

∂

∂Y 2
Jn−1(Ỹ )|Y 2=X2+K1

=
∂

∂X2
Vn−1(X̃)

z2
n−1 −K1 ≤ X2 ≤ z2

n −K1 Vn(X̃) = Jn(X2, X2 + K1), Vn−1(X̃) = Jn−1(X2, z2
n−1)

∂

∂X2
Vn(X̃) =

∂

∂Y 1
Jn(Ỹ )|Y 1=X2 +

∂

∂Y 2
Jn(Ỹ )|Y 2=X2+K1

≤ ∂

∂Y 1
Jn−1(Ỹ )|Y 1=X2 =

∂

∂X2
Vn−1(X̃)

z2
n −K1 ≤ X2 ≤ z1

n−1 Vn(X̃) = Jn(X2, z2
n), Vn−1(X̃) = Jn−1(X2, z2

n−1)
∂

∂X2
Vn(X̃) =

∂

∂Y 1
Jn(Ỹ )|Y 1=X2 ≤ ∂

∂Y 1
Jn−1(Ỹ )|Y 1=X2 =

∂

∂X2
Vn−1(X̃)
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z1
n−1 ≤ X2 ≤ z1

n Vn(X̃) = Jn(X2, z2
n), Vn−1(X̃) = Jn−1(max(z1

n−1, X
1), z2

n−1)
∂

∂X2
Vn(X̃) =

∂

∂Y 1
Jn(Ỹ )|Y 1=X2 ≤ 0 =

∂

∂X2
Vn−1(X̃)

z1
n ≤ X2 ≤ z2

n−1 Vn(X̃) = Jn(z1
n, z2

n), Vn−1(X̃) = Jn−1(max(z1
n−1, X

1), z2
n−1)

∂

∂X2
Vn(X̃) = 0 =

∂

∂X2
Vn−1(X̃)

z2
n−1 ≤ X2 ≤ z2

n Vn(X̃) = Jn(z1
n, z2

n), Vn−1(X̃) = Jn−1(max(z1
n−1, X

1), X2)
∂

∂X2
Vn(X̃) = 0 ≤ ∂

∂Y 2
Jn−1(Ỹ )|Y 2=X2 =

∂

∂X2
Vn−1(X̃)

When z1
n > z2

n−1, the fifth range disappears, the range the fourth case covers is z1
n−1 ≤ X2 ≤

z2
n−1, the range the sixth case covers is z1

n ≤ X2 ≤ z2
n, and another case appears:

z2
n−1 ≤ X2 ≤ z1

n Vn(X̃) = Jn(X2, z2
n), Vn−1(X̃) = Jn−1(max(z1

n−1, X
1), z2

n−1)
∂

∂X2
Vn(X̃) =

∂

∂Y 2
Jn(Ỹ )|Y 2=X2 ≤ 0 ≤ ∂

∂Y 2
Jn−1(Ỹ )|Y 2=X2 =

∂

∂X2
Vn−1(X̃)

II. z2
n−1 − z1

n−1 ≥ K1. The cases we consider are: (E) z1
n−1 ≤ z1

n ≤ z2
n−1 − K1 and z1

n−1 ≤
z2
n−K1 ≤ z1

n−1+K1; (F) z2
n−1−K1 ≤ z1

n+K1 and z1
n−1 ≤ z2

n−K1 ≤ z1
n−1+K1; (G) z1

n−1+K1 ≤ z1
n ≤

z2
n−1; (H) z1

n−1 +K1 ≤ z2
n−K1 ≤ z2

n−1 and z1
n−1 ≤ z1

n ≤ z1
n−1 +K1; (I) z1

n−1 +K1 ≤ z2
n−K1 ≤ z2

n−1

and z2
n−1 ≤ z1

n; and (J) z2
n−1 ≤ z2

n − K1 and z2
n − K1 ≤ z1

n ≤ z2
n. Although the actual solution

may be dependent upon the level of X1, the derivative with respect to X2 is identical in its form.

Therefore, we present here the most representative case, (E).

For X1 ≤ z1
n−1,

∂
∂X1 Vn−1(X̃) = 0, for z1

n−1 ≤ X1 ≤ z2
n−1−K1, ∂

∂X1 Vn−1(X̃) = ∂
∂Y 1 Jn−1(Ỹ )|Y 1=X1+

∂
∂Y 2 Jn−1(Ỹ )|Y 2=X1+K1

≥ 0, and for X1 ≥ z2
n−1−K1, ∂

∂X1 Vn−1(X̃) = ∂
∂Y 1 Jn−1(Ỹ )|Y 1=X1 ≥ 0. Like-

wise, X1 ≤ z1
n, ∂

∂X1 Vn(X̃) = 0, and so ∂
∂X1 Vn(X̃) ≤ ∂

∂X1 Vn−1(X̃) for X̃ ≤ z̃n.

Now consider the subcases for X2 in case (E).

X2 ≤ z1
n−1 Vn(X̃) = Jn(X2, X2 + K1), Vn−1(X̃) = Jn−1(X2, X2 + K1)

∂

∂X2
Vn(X̃) =

∂

∂Y 1
Jn(Ỹ )|Y 1=X2 +

∂

∂Y 2
Jn(Ỹ )|Y 2=X2+K1

≤ ∂

∂Y 1
Jn−1(Ỹ )|Y 1=X2 +

∂

∂Y 2
Jn−1(Ỹ )|Y 2=X2+K1

=
∂

∂X2
Vn−1(X̃)

z1
n−1 ≤ X2 ≤ z1

n Vn(X̃) = Jn(X2, X2 + K1), Vn−1(X̃) = Jn−1(z1
n−1, z

1
n−1 + K1)

∂

∂X2
Vn(X̃) =

∂

∂Y 1
Jn(Ỹ )|Y 1=X2 +

∂

∂Y 2
Jn(Ỹ )|Y 2=X2+K1

≤ 0 =
∂

∂X2
Vn−1(X̃)
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z1
n ≤ X2 ≤ z1

n−1 + K1 Vn(X̃) = Jn(z1
n, z1

n + K1), Vn−1(X̃) = Jn−1(z1
n−1, z

1
n−1 + K1),

Vn−1(X̃) = Jn−1(X1, X1 + K1)
∂

∂X2
Vn(X̃) = 0 =

∂

∂X2
Vn−1(X̃)

z1
n−1 + K1 ≤ X2 ≤ z1

n + K1 Vn(X̃) = Jn(z1
n, z1

n + K1), Vn−1(X̃) = Jn−1(X1, X1 + K1)
∂

∂X2
Vn(X̃) = 0 =

∂

∂X2
Vn−1(X̃)

Thus we have established (3) and (4). Consequently, we have the following for Ỹ ≤ z̃n:

∂

∂Y 1
Vn(Ỹ ) ≤ ∂

∂Y 1
Vn−1(Ỹ )

∂

∂Y 1
EVn(Ỹ −D) ≤ ∂

∂Y 1
EVn−1(Ỹ −D)

∂

∂Y 1

[
L(Ỹ ) + βEVn(Ỹ −D)

]
≤ ∂

∂Y 1

[
L(Ỹ ) + βEVn−1(Ỹ −D)

]

∂

∂Y 1
Jn+1(Ỹ ) ≤ ∂

∂Y 1
Jn(Ỹ ).

The same logic applies for the derivatives with respect to Y 2, proving (1) and (2). This, thus

implies z1
n and z2

n are monotonically non-decreasing in n.

(b) This part of the proof is achieved by comparing the derivatives of the value functions of the

two systems. Since V A
0 (·) = V B

0 (·) = 0, JA
1 (Ỹ ) = JB

1 (Ỹ ) = L(Ỹ ) and thus all the derivatives are

identical, resulting in z1A
1 = z1B

1 and z2A
1 = z2B

1 . This establishes the basis. We now wish to prove

the following:
∂

∂Y 1
JB

n (Ỹ ) ≤ ∂

∂Y 1
JA

n (Ỹ ) and
∂

∂Y 2
JB

n (Ỹ ) ≤ ∂

∂Y 2
JA

n (Ỹ ).

Assume these conditions for period n − 1. There exist four possible cases in period n − 1: (i)

z2A
n−1−ζA

n−1 ≤ KA
1 , z2B

n−1−ζB
n−1 ≤ KB

1 ; (ii) z2A
n−1−ζA

n−1 > KA
1 , z2B

n−1−ζB
n−1 ≤ KB

1 ; (iii) z2A
n−1−ζA

n−1 ≤
KA

1 , z2B
n−1 − ζB

n−1 > KB
1 ; and (iv) z2A

n−1 − ζA
n−1 > KA

1 , z2B
n−1 − ζB

n−1 > KB
1 . Lemma A1 ensures that

z1A
n−1 ≤ z1B

n−1 in all these cases. While these four cases are exhaustive, they are very similar in their

logic and for the sake of brevity only case (i) will be examined. The full proof may be obtained

from the authors.

A single representative example from case (i) will be demonstrated; all other situations mimic

the following subcases closely in principle.

We deal with an example where z1B
n−1 ≤ z2A

n−1. We consider various sub-cases which exhaust

all potential starting inventory positions. These inventory positions are for X̃ ∈ SB := {Ỹ ∈
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<2|Y 2 − Y 1 ≤ KB
1 }. Firstly, we consider the derivatives with respect to X1

X1 ≤ z1A
n−1

∂

∂X1
V A

n−1(X̃) = 0 =
∂

∂X1
V B

n−1(X̃)

z1A
n−1 ≤ X1 ≤ z1B

n−1

∂

∂X1
V A

n−1(X̃) =
∂

∂Y 1
JA

n−1(Ỹ )|Y 1=X1 ≥ 0 =
∂

∂X1
V B

n−1(X̃)

z1B
n−1 ≤ X1 ∂

∂X1
V A

n−1(X̃) =
∂

∂Y 1
JA

n−1(Ỹ )|Y 1=X1 ≥ ∂

∂Y 1
JB

n−1(Ỹ )|Y 1=X1 =
∂

∂X1
V B

n−1(X̃)

and those with respect to X2

X2 ≤ z2A
n−1 −KA

1

∂

∂X2
V A

n−1(X̃) =
∂

∂Y 1
JA

n−1(Ỹ )|Y 1=X2 +
∂

∂Y 2
JA

n−1(Ỹ )|Y 2=X2+KA
1

≥ ∂

∂Y 1
JA

n−1(Ỹ )|Y 1=X2 +
∂

∂Y 2
JA

n−1(Ỹ )|Y 2=X2+KB
1
≥

∂

∂Y 1
JB

n−1(Ỹ )|Y 1=X2 +
∂

∂Y 2
JB

n−1(Ỹ )|Y 2=X2+KB
1

=
∂

∂X2
V B

n−1(X̃)

z2A
n−1 −KA

1 ≤ X2 ≤ z1A
n−1

∂

∂X2
V A

n−1(X̃) =
∂

∂Y 1
JA

n−1(Ỹ )|Y 1=X2 ≥
∂

∂Y 1
JB

n−1(Ỹ )|Y 1=X2 +
∂

∂Y 2
JB

n−1(Ỹ )|Y 2=X2+KB
1

=
∂

∂X2
V B

n−1(X̃)

z1A
n−1 ≤ X2 ≤ z2B

n−1 −KB
1

∂

∂X2
V A

n−1(X̃) = 0 ≥
∂

∂Y 1
JB

n−1(Ỹ )|Y 1=X2 +
∂

∂Y 2
JB

n−1(Ỹ )|Y 2=X2+KB
1

=
∂

∂X2
V B

n−1(X̃)

z2B
n−1 −KB

1 ≤ X2 ≤ z1B
n−1

∂

∂X2
V A

n−1(X̃) = 0 ≥ ∂

∂Y 1
JB

n−1(Ỹ )|Y 1=X2 =
∂

∂X2
V B

n−1(X̃)

z1B
n−1 ≤ X2 ≤ z2A

n−1

∂

∂X2
V A

n−1(X̃) = 0 =
∂

∂X2
V B

n−1(X̃)

z2A
n−1 ≤ X2 ≤ z2B

n−1

∂

∂X2
V A

n−1(X̃) =
∂

∂Y 2
JA

n−1(Ỹ )|Y 2=X2 ≥ 0 =
∂

∂X2
V B

n−1(X̃)

z2B
n−1 ≤ X2 ∂

∂X2
V A

n−1(X̃) =
∂

∂Y 2
JA

n−1(Ỹ )|Y 2=X2

≥ ∂

∂Y 2
JB

n−1(Ỹ )|Y 2=X2 =
∂

∂X2
V B

n−1(X̃)

With the many subcases of (i)-(iv), this suffices to show

∂

∂X1
V B

n−1(X̃) ≤ ∂

∂X1
V A

n−1(X̃) and
∂

∂X2
V B

n−1(X̃) ≤ ∂

∂X2
V A

n−1(X̃).

Follow the logic for the derivatives with respect to Y 1 (the same logic holds for Y 2):

∂

∂Y 1
V B

n−1(Ỹ ) ≤ ∂

∂Y 1
V A

n−1(Ỹ )

∂

∂Y 1
EV B

n−1(Ỹ −D) ≤ ∂

∂Y 1
EV A

n−1(Ỹ −D)

∂

∂Y 1

[
L(Ỹ ) + βEV B

n−1(Ỹ −D)
]
≤ ∂

∂Y 1

[
L(Ỹ ) + βEV A

n−1(Ỹ −D)
]
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∂

∂Y 1
JB

n (Ỹ ) ≤ ∂

∂Y 1
JA

n (Ỹ ).

Using Lemma A1, this implies the result.

Lemma A2 Let N = 2 supply chain with K2 ≥ K1 operate under a base-stock policy with levels

z̃ such that z2 − z1 = K1 and let X̃ ≤ z. If the lower echelon base-stock level is reached, then the

upper echelon can also achieve its base-stock level in the same period.

Proof If z1 is reached, z1 −X1 ≤ X2 −X1 and z1 − x1 ≤ K1. Since z2 − z1 = K1, z2 −K1 ≤ X2,

or 0 ≤ z2 −X2 ≤ K1 ≤ K2, and thus z2 can be reached in the current period.

Lemma A3 Consider an N -stage serial supply chain operating under a MEBS policy where zj −
zj−1 = K1 and Kj ≥ K1 for all j > 1. Assume for a given period Xj −Xj−1 = K1 for all j > 1.

Then (a) Xj − Xj−1 = K1 for all j > 1 in all future periods; and (b) once z1 −K1 ≤ X1 ≤ z1,

then z̃ is reachable in a single period for all echelons.

Proof (a) Subscripts in this proof will reflect time counted backwards (but does not reflect a

finite-time horizon). In any period n for installation 1 < j < N , we have

Xj
n−1 −Xj−1

n−1 = Y j∗
n − Y (j−1)∗

n = min(zj , Y (j−1)∗
n + K1, X

j+1
n )− Y (j−1)∗

n

= min(zj , Y (j−1)∗
n + K1, X

j
n + K1)− Y (j−1)∗

n

= Y (j−1)∗
n + K1 − Y (j−1)∗

n = K1

The fourth equality is drawn from two facts: (a) Y
(j−1)∗
n ≤ zj−1 and hence Y

(j−1)∗
n + K1 ≤

zj−1 + K1 = zj ; and (b) Y
(j−1)∗
n ≤ Xj

n and hence Y
(j−1)∗
n + K1 ≤ Xj

n + K1 = Xj+1
n .

Similarly, for echelon N using fact (a) we have,

XN
n−1 −XN−1

n−1 = Y N∗
n − Y (N−1)∗

n = min(zN , Y (N−1)∗
n + K1)− Y (N−1)∗

n

= Y (N−1)∗
n + K1 − Y (N−1)∗

n = K1

(b) Whether the system can reach z̃ in a single period is simply an issue of stock availability in the

system. If X1 ≤ z1 ≤ X1 + K1 and X2 − X1 = K1, then clearly X2 ≥ z1 and so echelon 1 can

reach z1 in the current period. Likewise, each of the higher installations, j, can replenish up to its

echelon level zj .
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Lemma A4 Consider an N -stage serial multi-echelon system with capacity limits of Ki ≥ K1

at stage i and 0 < E[D] < K1. Consider the echelon base-stock policy, π(K), ordering up to

(i−1)K1 at echelon i. Define T as the random variable representing the number of periods between

subsequent visits to these base-stock levels. Then (a) E[T ] < ∞ and (b) there exists A ∈ <+ such

that Jn(0,K1, 2K1, . . . , (N − 1)K1) ≤ An.

Proof Lemma A3 shows that once the level of K1 units is achieved at each installation higher than

installation 1, these levels will be retained in all future periods. Since K1 ≤ Ki for all i ∈ {2, . . . , N},
there will not be a constraining capacity other than K1 under policy π(K). Therefore, after the

installation inventory level of K1 is reached at all installations above installation 1, the system can

be analyzed identically to that of Kapuscinski and Tayur (1995). Installation 1 can be regarded as

a capacitated single installation since there will never be a shortage of supply from installation 2

(z2 − z1 = K1). Consequently, using part (a) of Lemma A in Kapuscinski and Tayur (1995) under

a stationary context, E[T ] < ∞.

(b)

Jn(0,K1, 2K1, . . . , (N − 1)K1) ≤ Jπ(K),β=1
n (0,K1, 2K1, . . . , (N − 1)K1)

= E




n∑

i=0


p|y1

i −Di|+
N∑

j=2

hj(y
j
i − yj−1

i )







≤ E




n∑

i=0


p|y1

i |+ p|Di|+
N∑

j=2

hjK1







=
n∑

i=0


pE|y1

i |+ pE[Di] +
N∑

j=2

hjK1




≤
n∑

i=0


pE[T ]K1 + pK1 +

N∑

j=2

hjK1




=


pE[T ] + p +

N∑

j=2

hj


 K1n = An

where A is a finite real number since E[T ] < ∞ from (a).

Theorem 10 There exists a stationary policy δ∗ which is average optimal in the sense that

Φ(δ∗, x) := lim supn→∞
1
nEX̃,δ∗ [

∑n−1
m=0 L(X̃m)] = infX̃∈S infδ Φ(δ, X̃) =: g for all X̃. δ∗ is limit
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discount optimal in that for any X̃ ∈ S for all β ↗ 1 such that δ∗(X̃) = limβ↗1 δ∗β(X̃). Addition-

ally, g = limβ↗1(1− β)mβ = limβ↗1(1− β)Vβ.

Proof We demonstrate that the conditions described by Schäl (1993) are satisfied permitting us

to invoke the main result from that paper. The techniques used here could also be applied to the

Federgruen and Zipkin (1986a) model, resulting in a simpler proof.

The finiteness of A(X̃) follows from the integrality of the state space and the capacity limits

at each installation. This satisfies the first of Schäl’s conditions. We now demonstrate the second

condition, (B). We use Lemma ?? to bound wβ(X̃) by constructing a policy δ for which right-hand

side is finite.

Let ϕβ(X̃) be the randomized stationary policy such that

V β(X̃) = min
Ỹ ∈A(X̃)

EVβ(Ỹ −D) = EVβ(ϕβ(X̃)−D).

exists. Let us define a random variable σβ := inf{n ≥ 0, βV β(X̃n) ≤ mβ}. We show that there

exist a finite upper bound on σβ, which is independent of β.

The optimal base-stock values of Vβ are uniformly bounded for 0 ≤ β < 1 (see Theorem ??);

let us denote this bound as z̃ < ∞. Define the set H := {X̃ ∈ S|0 ≤ X̃ ≤ z̃}. Let H = |H|, the

cardinality of H. Clearly, H is finite since z̃ < ∞ and the state space consists of integers. Since

Vβ is continuous, convex, and increases to ∞ when any coordinate of its argument goes to +/-∞,

there exists a finite minimizer Ỹβ ∈ H such that

mβ = inf
Ỹ

E[Vβ(Ỹ −D)] = E[Vβ(Ỹβ −D)].

It is easy to show that βV β ≤ Vβ and βmβ ≤ mβ ≤ mβ (see Schäl, 1993, for a formal derivation).

Therefore,

σβ = inf{n ≥ 0, βV β(X̃n) ≤ mβ}

≤ inf{n ≥ 0, βV β(X̃n) ≤ βmβ}

= inf{n ≥ 0, inf
Ỹ ∈A(X̃n)

E[Vβ(Ỹ −D)] = mβ}.

To generate an upper bound on σβ, consider a non-stationary policy, δ, where each element

of H will sequentially assume the base-stock role as the prior one is reached. Since Ỹβ ∈ H,

we show that this non-stationary policy is guaranteed to visit Ỹβ. Glasserman and Tayur (1994,
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p.917) demonstrate that shortfall states are Harris-ergodic. Since ED < K1, for a given (fixed)

base-stock level, the process we consider is Harris-ergodic for the subset of all non-transient states.

Consequently, we have finite mean recurrence times. Resulting from this, if a state can be reached,

then the expected time to get from any state within H to another state in H is finite. Considering

a sequence of base-stock levels corresponding to the inventory target, the expected time to visit

that inventory target is finite. Let T (X̃) be the expected time to visit all points in H. Let

τ0(X̃) = inf{n ≥ 0,
∑n

i=1 Di ≥ X̃} and τi(i−1) be the first visit time to visit point i ∈ {1, 2, . . . , H}
when starting from position i− 1. As stated,

σβ ≤ τ0(X̃) +
H∑

i=1

τi(i− 1) =: T (X̃)

where τ1(0) begins from a position below 0, having traversed there from the initial stock position

X̃ in τ0(X̃) periods. Since H is finite, σ = T (X̃), which is greater than or equal to σβ, is finite.

Policy δ is the non-stationary policy where each element of H sequentially becomes a base-stock

level and continues to be base stock until it is visited.

Now, EL(ϕ(X̃σ)) ≤ E[(p, h1)+|Y 1
σ−D|+∑N

j=2 hjK1] ≤ E[(p, h1)+|Y 1
σ |+(p, h1)+|D|+

∑N
j=2 hjK1] ≤

(p, h1)+z1 + (p, h1)+K1 +
∑N

j=2 hjK1 < ∞ since Y 1
σ is guaranteed to be within H. Hence,

EX̃,δ

[
σ−1∑

n=0

L(X̃n) + L(ϕ(X̃σ))

]

≤ EX̃,δ




T (X̃)−1∑

n=0

[(p, h1)+|Y 1
n −Dn|+

N∑

j=2

hjK1] + L(ϕ(X̃σ))




≤ EX̃,δ




T (X̃)−1∑

n=0

[(p, h1)+|Y 1
n |+ (p, h1)+|Dn|+

N∑

j=2

hjK1] + L(ϕ(X̃σ))




≤ EX̃,δ




T (X̃)−1∑

n=0

(p, h1)+|Y 1
n |+ (p, h1)+K1 +

N∑

j=2

hjK1


 + E[L(ϕ(X̃σ))]

= EX̃,δ




T (X̃)−1∑

n=0

(p, h1)+|Y 1
n |


 + [(p, h1)+K1 +

N∑

j=2

hjK1]E[T (X̃)] + E[L(ϕ(X̃σ))] (5)

by Wald’s Theorem. The first inequality comes from the existence of Ỹβ in H. The second inequal-

ity results from the triangle inequality. The third inequality follows from the fact that E[D] < K1.

Glasserman and Tayur (1994) establish that the shortfalls, and hence the inventory levels them-

selves, are stationary in distribution and finite, almost surely, for an ergodic stationary demand
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with E[D] < K1.

For inventory x, shortfall s, and up-to level y: (a) Aviv and Federgruen (1997) show E[|x|ρ] < ∞
and E[|s|ρ] < ∞ when E[Dl] < ∞ for all l ≤ ρ + 1; (b) Kapuscinski and Tayur (1998) show

E[|x|ρ] < ∞ and E[|y|ρ] < ∞ when E[D2ρ+2] < ∞; and (c) Simchi-Levi and Zhao (2001) show

E[|x|ρ] < ∞, E[|y|ρ] < ∞, and E[|s|ρ] < ∞ when E[Dl] < ∞ for all l ≤ 2ρ. For ρ = 1, (a) and

(c) are sufficient to show that the expected cost in one period is finite for 0 < E[D] < K1 and

E[D2] < ∞. This combined with the positive recurrence of the shortfall Markov chain (Glasserman

and Tayur, 1994) establishes the finiteness of the first term in (5). This also demonstrates the

finiteness of the second term. Consequently, (5) is finite since E[L(ϕ(X̃σ))] < ∞ from the logic

above. Therefore, by Lemma ??, we have wβ bounded for all β < 1, thus satisfying (B).
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