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1. Introduction
The inclusion of noncooperative behavior into operational
models adds an additional layer of realism, reflecting the
relationships between independent firms in real supply
chains acting in their own self-interest. We include such
noncooperative behavior in a serial supply chain, together
with several other elements of realism: production capac-
ity limits, time dynamics, and stochastic consumer demand.
All of this is done under the auspices of a model where
the firms make production decisions and physical inventory
and consumer backlogs are carried from period to period.
While horizontal competition is studied in numerous papers
(e.g., Parlar 1988, Lippman and McCardle 1997), verti-
cal settings have attracted less attention. Furthermore, the
common lexicon used in practice in these settings often de-
emphasizes the agents’ differing objectives by referring to
them as “partners.”

In this paper we are particularly interested to see how
two elements observed in virtually all real situations, lim-
ited capacity and independent players, affect operations
in vertical (serial) settings. We study the simplest setting
where both elements are present, i.e., a two-stage com-
petitive capacitated serial system. We assume that each of
the two stages is owned separately, but the firms in the
channel have the obvious commercial relationship of buyer
and seller and a shared economic interest in satisfying the

final customers. The model is evaluated over multiple time
periods. All parameters and states are considered common
knowledge so that all players have full information. We are
interested in the following questions: Is there a unique equi-
librium, and if not, is there a means of choosing an appro-
priate equilibrium? Does the structure of the equilibrium
policy mirror that of the centralized case? Is there a sig-
nificant performance gap due to not following the first-best
solution? How does the split of benefits between retailer
and supplier influence the efficiency of the whole chain?
What is the effect of a more restrictive capacity upon the
system efficiency?

The relevant literature can be divided into three cat-
egories: multiechelon research, capacitated research, and
competitive research. For the literature in multiechelon
systems, see Tayur et al. (1999). The first papers in the
operations literature dealing with capacity decisions in
simple one-stage systems include Arrow et al. (1958).
Later, structural properties of operating under capacity con-
straints dominated a significant portion of this literature.
Federgruen and Zipkin (1986a, b) demonstrate that a mod-
ified base-stock policy is optimal for a single-stage capaci-
tated inventory system over an infinite horizon. This policy
recommends ordering up to a particular inventory level, if
possible, but to the capacity level otherwise. Kapuściński
and Tayur (1998) extend this to a nonstationary (periodic)
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demand scenario. In Glasserman and Tayur (1994) sev-
eral properties are shown for a serial multiechelon system
with capacity limits when a base-stock policy is assumed,
but this policy is not demonstrated to be optimal. Parker
and Kapuściński (2004) examine a serial two-echelon sys-
tem under centralized control, where each installation has
a production capacity limit and the smaller capacity is
at the retailer. The optimal policy is a modified echelon
base-stock type, where the ongoing inventory operation can
be reserved to a self-reinforcing “band” of inventory state
space. The modified echelon base-stock policy is where the
supplier will stock no more than the retailer can process
in a single period, and both installations will attempt to
reach desired echelon up-to levels (formally defined in Def-
inition 2). Janakiraman and Muckstadt (2009) consider the
same system and show a multilevel up-to policy is optimal
for a system with both a single- and two-period leadtime
upstream of the supplier, and derive a bound for the number
of up-to levels in longer systems. The objective function in
the papers cited in both groups above (multiechelon anal-
ysis and capacity) is to minimize the total system costs,
i.e., multiple independent decision makers are not consid-
ered. Clearly, the advancement of capacity-limited inven-
tory research has been surprisingly slow, indicating that the
addition of capacity constraints dramatically increases the
difficulty of these problems.

In the competitive setting, Cachon and Zipkin (1999)
consider a decentralized two-stage (retailer and supplier)
inventory game without capacity limits. The cost functions
of the retailer and supplier in their paper are identical to
those in our model. In their settings, the one-period prob-
lem is equivalent to the infinite-time problem, due to the
assumed infinite capacities, as the supplier is always able
to reach his desired target level, thus making it a regen-
eration point, and the retailer can achieve the same inven-
tory distribution in every period. Due to this equivalence,
local and echelon games can be compared with the sup-
ply chain optimal result from Clark and Scarf (1960). Such
equivalence (between the one-period and infinite-horizon
problems) is not readily available for systems with limited
capacity, which we consider, because the initial inventory
in every period may be arbitrarily low and we cannot guar-
antee any form of regeneration, so myopic policies cannot
be considered.

There have been numerous recent studies investigat-
ing various mechanisms to “coordinate” the supply chain,
beginning with Pasternack (1985) and including Chen
(1999) and Porteus (2000). While this is a burgeoning line
of inquiry (see Cachon 2003, for a summary), we do not
design a coordinating mechanism or contract but seek the
structure of the equilibrium inventory policy and examine
the effects of capacity restrictions upon the system. More-
over, other than the below-cited papers (and references
therein), single-period or infinite-horizon static settings
are usually considered, whereas our model is inherently

dynamic. Donohue (2000) illustrates the degree of com-
plication of determining and executing contracts which
span multiple periods (two in that case). The usage of
Markov Games to inventory settings so far has been lim-
ited. Hall and Porteus (2000) consider a market-size depen-
dent newsvendor under competition where the inventory
perishes in one period and the only state variable that
evolves over time is market size. Olsen and Parker (2008)
consider a similar retailer competition setting but they allow
for durable inventories and backlogging of unmet demand,
so inventory levels in addition to market sizes are carried
as state variables from period to period.

This paper provides contributions on three levels. First,
the capacitated inventory theory literature is extended. It
removes the central ownership assumption present in Parker
and Kapuściński (2004). Second, this paper demonstrates
an application of dynamic games to an inventory sys-
tem. The dynamic game methodology has been used only
in a limited sense previously in inventory models, with
the exception of the above-mentioned papers; namely, for
infinite-horizon games. It is noteworthy that such a repre-
sentation is potentially susceptible to subgame deviations
(see Başar and Olsder 1999). This weakness is not present
in our dynamic game formulation. Last, the significance
of our model is that it addresses three operational issues
that are amongst the most important for a firm: (i) capacity
constraints, (ii) inventory-related costs, and (iii) inter-firm
coordination.

The paper is structured as follows. In §2 we describe
the model and relate it to the fundamental requirements
imposed in the economics literature. Section 3 contains
key structural results, followed by related remarks in §4.
Section 5, based on a numerical study, illustrates sys-
tem dynamics and sensitivity to critical parameters, and it
allows us to interpret the effects of capacity and competi-
tion. We conclude in §6. Proofs appear in Appendix A.

2. Model Description
Consider a multiple-period inventory model with a retailer
(“her”) and a supplier (“him”) acting in their own inter-
ests. In each period the firms simultaneously decide the
amounts to order, mindful that they cannot order any more
than is available at the immediate upstream installation
(the inventory availability constraint) or can be processed
in that period (the capacity constraint). It is assumed that
the outside supplier providing goods to the upper installa-
tion in our system has limitless availability of inventory.
The demand is stochastic and stationary and realizations
are unknown until after decisions are made. Unsatisfied
consumer demand is fully backlogged. The distribution
of demand is known to both players. The supplier’s and
retailer’s objectives are to minimize their expected dis-
counted backlogging and holding costs. Since capacity is
limited, a large demand realization could result in a sig-
nificant backlog that may take the system many periods to
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“catch up,” resulting in each player being unable to attain
their desired (presumed) stock levels. Thus, we explic-
itly consider a multiple-period (finite-horizon) game with
a state (inventory position) which affects the equilibrium
decisions in each period. Our objective is to characterize
the behavior of both the retailer and supplier. Such behavior
should be a subset of all equilibria.

2.1. Markov Equilibria and Strategies

We start with a justification of our choice of model in the
broader landscape of models of competitive behavior. Game
theory has many concepts of equilibrium. For our pur-
poses, the Markov Equilibrium concept is more appropri-
ate since we wish an explicit dependence upon some state
variables and the stochasticity of our model as explained
below. A Markov Equilibrium is associated with a Markov
Game (see Başar and Olsder 1999), where the state can dif-
fer from period to period.1 The current state can represent
an aspect of the game that is manipulated by the players’
actions, often a physical quantity or state.

Kirman and Sobel (1974) recognize the dynamics of
physical inventory, noting the lack of intertemporal depen-
dence in the extant literature: “whatever any player does in
one period does not affect the game in the next period.”
Cachon and Zipkin (1999) avoid this dependence by con-
sidering the infinite-horizon version, endowing them with
a static inventory policy. Due to the lack of capacity
restrictions, the physical scenario is unchanged at the
beginning of every time period resulting in the same
equilibrium. Using the infinite-horizon version of Clark and
Scarf’s (1960) induced penalty cost functions (established
by Federgruen and Zipkin 1984), they consider infinite-
horizon versions of each installation’s separated value func-
tion. For a finite horizon, the transferral of material between
players and the delivery of goods to the consumer can
actually be described by explicit functions, reminiscent of
Clark and Scarf (1960) and Kirman and Sobel (1974). In
the presence of capacity constraints and demand stochastic-
ity, the assumption that all periods begin identically, as in
a repeated game context, cannot be used. We apply, there-
fore, the Markov Equilibrium concept to a finite-horizon
inventory model.

The appropriateness of ME is described in the economics
literature. Maskin and Tirole (2001) provide a good dis-
cussion of the merits of MEs. First, Markov strategies pre-
scribe the simplest form of behavior that is consistent with
rationality. They depend upon a limited number of vari-
ables upon which decisions are based. Second, the notion
of “bygones are bygones” is reflected in the use of the
Markov concept. This suggests that the outcome of a game
should only be affected by the strategic elements of that
subgame. The third element is the principle that “minor
causes should have minor effects,” suggesting that the game
should only be influenced greatly by factors that are signif-
icant. This selection of payoff-relevant history needs to be
done carefully because the entire usage of the equilibrium

concept depends upon it. In our modeling situation of a
multiechelon inventory application, the selection of inven-
tory levels at the beginning of each period as state vari-
ables seems natural.2 We are conscious of the importance
of this decision and are aware that any results are qualified
by this selection. For further discussions of MEs, see also
Fudenberg and Tirole (1991, chapter 13), Filar and Vrieze
(1997), and Başar and Olsder (1999).

2.2. Formulation

In this section, the model is formulated, the notation is
defined, and the assumptions are stated. We are modeling
a multiperiod two-stage (N = 2) serial system. Each stage
denotes a separate firm, attempting to minimize their own
cost function. Each stage j ∈ 81129 has a capacity limit, Kj ,
where we denote the retailer as stage 1, or installation 1,
and the supplier as stage 2, or installation 2. Demand in
period n, D, is stochastic and unsatisfied demand is back-
logged. Costs include linear physical holding and backlog-
ging penalty costs, charged after demand is realized.

The backlogging penalty cost is shared between the
retailer and supplier. This setup is identical to that in
Cachon and Zipkin (1999) and similar to Pasternack
(1985). This is natural since a supplier (e.g., a manufac-
turer) would be concerned with the ultimate retail sale of
his good; if the retailer is not selling the good, in turn the
retailer will not be ordering goods from the supplier. Note
that the supplier’s share of the backlog cost does not imply
a monetary exchange between the parties but an internal
cost absorbed due to the insufficient channel service to the
customers.3

It is appropriate to briefly discuss alternatives to the
framework we are modeling for unsatisfied demand. Most
economic models consider either one or two periods only
and there is usually no modeling difference between lost
sales and backlogging, and it is typical to interpret lost rev-
enue as the cost of not satisfying the customer. While for
short horizons, there may be a difference between sell-in
(how much a supplier sells to a retailer) and sell-through
(how much a retailer sells to the final customers), in the
longer term these are identical and the entire demand not
satisfied hurts both the retailer and supplier. The actual
cost to each of them may be higher or lower than lost or
delayed revenue, due to externalities such as the cost of
lost goodwill (perhaps resulting in reduced future demand,
as in Olsen and Parker 2008), the cost of transporting a
product from an alternative retailer, or buying complemen-
tary products. Our approach of assigning the backlogging
cost to both the supplier and retailer is very close to these
interpretations. Obvious alternatives we do not model are
to consider lost sales, partially lost sales, or self-imposed
particular service levels. In these cases, however, the inter-
action between the firms’ policies is modest and, most
importantly, by exogenizing service levels, a corresponding
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level would not reflect one of the critical economic trade-
offs (between having too much and too little inventory)
that is central to our model.

We assume the following:
• Demand, D, is a random variable with finite mean

and second moment and 0 < E6D7 < K1. Its continu-
ous probability distribution function is known to both
firms. Demands are independent and identically distributed
between periods.

• Any unsatisfied consumer demand is backlogged into
the next period.

• Deliveries are made in the same periods as the orders
placed for those goods, if availability and capacity limits
permit.

• All costs and capacity levels are stationary, determin-
istic, and known by all firms.

• All payoff-relevant information is contained in the
state variables, namely the inventory levels at the begin-
ning of each period. Both firms know the inventory levels
at both echelons at the beginning of each period.

• Both firms are rational and risk neutral. Both firms
discount money at the same rate, � ∈ 60115, although this
is not necessary for any results.

• When equilibrium A results in lower costs than equi-
librium B for both of the firms, B will be discarded (Pareto
refinement).

• The retailer and supplier incur inventory carrying cost
per unit per period of h1 +h2 and h2, respectively (hj > 0,
j = 112).

• pj is the cost assessed to installation j for each unit
of backlog at installation 1, pj > 0.

• Capacities are ordered K2 ¾K1 > 00
The timing of events within a period is as follows:

(1) players observe inventory levels and place orders with
their respective suppliers; (2a) the supplier delivers goods
to the retailer; (2b) the outside supplier delivers goods to
the supplier; (3) consumer demand is realized, and the
retailer attempts to satisfy as much demand as possible;
and (4) costs are assessed. We restrict our attention to pure
strategies only. The orders by the supplier will be available
for usage at the beginning of the following period. This
translates into a single-period delivery leadtime for each
firm. Leadtimes can be introduced between the supplier and
retailer as described in §4.

The ordering of capacities (K1 ¶K2) limits the universal-
ity of the model, but still allows applicability to numerous
industries. For example, in the steel industry the final stage
of the supply chain is often a cold-rolling mill which is
frequently a bottleneck. Clearly, the model’s serial nature
makes it inappropriate for assembly or distribution systems.
The stability condition (E6D7 <K1) is required to guarantee
finite backlogs and stable operation of the system, similar
to Parker and Kapuściński (2004).

Time is counted backwards from the end of the horizon
with period 1 being the final period. We define the local
inventory at installation j at the beginning of period n as xj

n

and the echelon inventory at echelon j in period n as Xj
n 2=

∑j
i=1 x

i
n. That is, the echelon inventory for a firm is the sum

of all inventory at and downstream of that firm. Denote
the inventory vector as x̃ = 4x11 x25 and ·X = 4X11X25; the
time subscript will be omitted generally. Let aj

n be the
actual amount ordered by installation j in period n. Aj4 ·X5
denotes the feasible action set for installation j , noting
the possible dependence upon the current inventory posi-
tion, and A4 ·X5=×2

j=1A
j4 ·X5. The state space is 8·X ⊂ <2 �

X1 ¶ X29. The inventory transition functions are x1
n−1 =

x1
n+a1

n−D and x2
n−1 = x2

n+a2
n−a1

n. We can substitute with
the standard echelon variables as follows: X1 = x1, X2 =

x1 + x2, Y 1 =X1 +a1, Y 2 =X2 +a2 = x1 + x2 +a2, which
implies, X1

n−1 = Y 1
n − D, x2

n−1 = x2
n − a1

n + a2
n = Y 2

n − Y 1
n ,

X2
n−1 = Y 2

n − D. Using these definitions, the periodic cost
functions are:

L14 ¶Y 5= 4h1 +h25E64Y
1
−D5+7+p1E64D− Y 15+71 (1)

L24 ¶Y 5= h24Y
2
− Y 15+p2E64D− Y 15+71 (2)

where 4x5+ = max401 x5. The retailer’s holding cost
(h1 +h2) reflects the value added by each of the installa-
tions. Denote the minimizing point of the one-period cost
function for echelon 1, L1, by y∗

my . Now we can define the
value functions of the model for each player. As backorders
are accepted at installation 1 but not at 2,4 installation 1
may order up to the minimum of K1 or x2. Therefore,
the action sets of feasible ¶Y ’s are A14 ·X5= 6X11min4X1 +

K11X
257 and A24 ·X5 = 6X21X2 + K27, and the game is

defined as follows:

V 1
n 4 ·X5= eqm ¶Y∈A4 ·X5J

1
n 4 ¶Y 51 V 2

n 4 ·X5= eqm ¶Y∈A4 ·X5J
2
n 4 ¶Y 51

J 1
n 4 ¶Y 5= L14 ¶Y 5+�E6V 1

n−14 ¶Y − ·D571

J 2
n 4 ¶Y 5= L24 ¶Y 5+�E6V 2

n−14 ¶Y − ·D571

V 1
0 4 · 5= 01 V 2

0 4 · 5= 01

where the equilibrium operator (eqm) describes the value
of a Nash equilibrium in each period, given the current
state, ·X, and constraints upon the players’ actions, A4 ·X5.
Vector ·D is defined as ·D = 4D1D5 (the same realization
of demand for each vector element, corresponding to ech-
elons). Our formulation assumes that the initial inventory
levels are visible to both players. In the Remarks section
(§4) we discuss the effect of various informational assump-
tions. Clearly, such a game is only well defined if the values
associated with equilibria in all later periods are specified.
As we show later, in the presence of multiple equilibria,
each equilibrium has a different value for each player, thus
requiring an equilibrium be uniquely determined, the focus
of the next section. If uniqueness, or some other means
of choosing a single equilibrium, were not possible, each
equilibrium path would lead to different costs, thus elimi-
nating the possibility of distinguishing a policy. Noticeably,
although V 1

0 and V 2
0 are defined to be zero, separate salvage

value functions will be applied in the final two periods.
These will be dealt with in the following section.
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3. Competing Through Echelon Levels
A natural question is whether the retailer and supplier com-
pete by making decisions about their echelon or installation
inventory levels. In the analysis of the centralized model,
these two frameworks are equivalent. These two approaches
are, however, not equivalent in decentralized settings.

To compare them, we first broaden the scope of poten-
tial alternatives and consider the sequential and simultane-
ous games. In a sequential game, with the retailer order-
ing first and the supplier second, similar to the centralized
case, there is no difference between the echelon and the
installation game—when the supplier chooses his order, he
optimizes his value function. The sequential game might
be a reasonable one to consider, if no informational or
transportation delays took place. When some leadtimes are
present, it is reasonable to expect that some of the supplier’s
decisions will be taken in anticipation of the retailer’s
orders, rather than knowing them for sure, which argues
for a simultaneous game when any delays exist.

In the simultaneous game, two known formulations are
the installation and echelon games. Both are for mathe-
matical convenience. The actual decisions are order quan-
tities a1 by the retailer and a2 by the supplier. Note that
deciding a1 is equivalent to deciding the ending eche-
lon inventory Y 1 for a given X1, as Y 1 = X1 + a1. Simi-
larly, deciding a2 is equivalent to deciding Y 2 = X2 + a2,
given X2. The intuition for the echelon game is straight-
forward: the supplier controls the total inventory in the
two-echelon system but not his installation inventory, while
the retailer controls how much of that two-echelon inven-
tory should be moved to her warehouse and stored at a
cost. Such a simple correspondence does not take place in
installation variables. Consider the supplier who starts with
inventory x2 and intends to raise it to y2. As y2 = x2 +

a2 − a1, deciding y2 would require knowing the retailer’s
order a1 (the supplier does not control inventory with-
drawn a1). In case the retailer withdraws a different quan-
tity than anticipated, the installation level will be different
from the intended one as well. In this sense, to guarantee
that the installation game results in the desired inventory
at the supplier, the game would have to be sequential, with
the retailer’s decision being observed by the supplier before
he makes his own decision.

Since it is difficult to provide any intuition that would
justify a simultaneous game in installation levels, we con-
sider a model when agents compete through their echelon
levels. As explained below, we are able to limit our anal-
ysis to a particular band of the state space, B, defined
below. Even with this assumption, many properties that nat-
urally hold in centralized models fail in competitive envi-
ronments. Additional constructs will allow us to overcome
these difficulties.

3.1. Salvage Value Functions

Salvage value functions are frequently used to (i) reflect
economic reality, (ii) overcome undesirable and unrepresen-

tative behavior at the end of the time horizon, or (iii) endow
a model with analytical tractability. At the end of the hori-
zon, there will frequently be nonstationary ordering behav-
ior in inventory applications. This behavior is unrepre-
sentative of the generally stationary ordering behavior for
lengthy time horizons. Using salvage value functions, we
can modify the end-of-horizon behavior (for our analytical
convenience). As these one-time costs in the distant future
(for reasonably long-time horizons) have little effect on the
actions across most of the preceding periods, they are a
device for generating sustainable behavior for the model.

We define salvage values which allow for sustainable
(well-defined) equilibria. In general, the end-of-horizon
effect of decreasing target levels exists, while, as we
explain below, in our competitive setting it is critical that
the target inventory levels for both firms do not decrease
at the end of the horizon. To achieve this, we design two
salvage value functions: a quadratic function for the retailer
(Lemma A.1 in the Appendix illustrates such a quadratic
function’s effect upon a single-stage capacitated installa-
tion), and a kinked linear function for the supplier. Let us
first consider the retailer’s salvage value function:

S1
04 ·X5= �14X

1
−�15

21

where the appropriately chosen scaling factor �1 > 0 and
translation factor �1 ¾ 0 influence the retailer’s order up-to
level in period 1, the final period where the retailer makes
a decision. Thus, J 1

1 4 ¶Y 5= L14 ¶Y 5+�E6S1
04 ¶Y − ·D57. Clearly,

J 1
1 is a function of Y 1 only. Let z1

1 2= arg minY 1 J 1
1 4 ¶Y 5.

The advantage the quadratic salvage value function presents
over a linear one is the facility to precisely locate a finite
and unique minimizer in period 1, permitting the usage
of a smaller portion of the state space at the end of the
horizon. (This contributes to algorithmic efficiency when
solving the model numerically, both through solving over a
smaller state space in each period and a shorter time hori-
zon until convergence.) Moreover, the quadratic function
facilitates the derivative dominance analysis in Theorem 2,
since the quadratic function’s contribution to the derivative
is a straight line. This enables the accurate placement of z1

1,
the retailer’s period 1 minimizer. Since the retailer’s sal-
vage value function is applied in period 1, z1

1 depends only
on �1, �1, and her economic parameters.

The salvage value function for the supplier is defined as

S2
14 ·X5= �24�2 −X25+1

and it is applied in period 2 according to the sup-
plier’s value function, J 2

2 4 ¶Y 5 = L24 ¶Y 5+�E6V 2
1 4 ¶Y − ·D57+

�E6S2
14 ¶Y − ·D57. We define �2 2= z1

1.5 (Notice the time sub-
script indicates S2

1 will affect the supplier’s ordering deci-
sion in period 2, the final period in which he orders.) This
choice of �2 forces the supplier’s minimizing point to be
located near the retailer’s minimizing point. We define �2 as

�2



















= 01 p2 ¶
1 −�

�
h21

¾ �p2 Pr4D+D>K15

1 −�
1 otherwise0

(3)
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Note that Pr4D+D>K15 in Equation (3) is referring to the
sum of the random demands from two periods. Also note
that if the penalty p2 is small compared to the holding costs,
it is not worthwhile for the supplier to hold stock. Formally,
if p2 ¶ 41 −�5/�h2, in every period J 2

n has a positive slope
with respect to Y 2, and the effect of the accumulated penal-
ties, starting from the following period (when the current
supplier inventory could influence the retailer’s inventory
position), will never overcome the one-period holding cost
and thus a salvage value is not needed; under this extreme
circumstance, a salvage function is not necessary, and we
assume �2 = 0. This result is shown in Theorem 3. When
p2 >h241−�5/�, we need to define a value of �2 that guar-
antees both that the supplier’s cost minimizer is positive
and finite, as well as that the up-to levels, which describe
an equilibrium, are nonincreasing in n. Within the proof of
Theorem 2, we demonstrate how this value of �2 allows
the dominance of cost function derivatives in neighboring
periods.

3.2. Analysis

The following definition and lemma allow us to simplify
notation and emphasize the structural elements of the main
proofs.

Definition 1. • Let x � 6a1 b7 = min4max4a1 x51 b5, i.e.,
the point within 6a1 b7 that is closest (or equal) to x.

• Let D denote the derivative, and let ¡j denote the par-
tial derivative with respect to the jth variable.

For convenience, let us define a subset of the state space,
hereafter known as the “band” and the “modified echelon
base-stock” policy.

Definition 2 (Parker and Kapuściński 2004). • The
band is defined as B = 8·X ⊂ <2 � X1 ¶ X2 ¶ X1 + K19,
the set of inventory states with the second-stage installation
inventory not exceeding K1.

• A policy is a modified echelon base-stock (MEBS)
policy if there exist targets Z1∗ and Z2∗, such that Y 1 =

Z1∗ � 6X11min4X1 +K11X
257 and Y 2 =Z2∗ � 6X21X2 +K17.

For the equilibrium policies, we only need to consider
actions that result in inventory states in the band B. The
intuition behind this result is clear. Since the lower of the
two capacities is at the retailer, the supplier can find no
benefit in holding more inventory than the retailer’s capac-
ity since no more than this level can be drawn in any sin-
gle period. And since the supplier’s capacity exceeds the
retailer’s and the supplier can order and receive K1 in one
period, the retailer will never be starved of material if the
supplier orders K1 instead of a larger quantity. This logic
is formalized in the following lemma.

Lemma 1. Consider a system with beginning inventory
X2

n − X1
n ¶ K1 for K1 ¶ K2. When the set of equilibria is

nonempty, a feasible policy such that Y 2
n −Y 1

n >K1 for any
n, cannot be an equilibrium.

Based on the above lemma (the proof is in the appendix),
we assume for the remainder of the paper that both eche-
lons 1 and 2 are aware that it is not beneficial for echelon 2
to be outside of band B.

We state without proof the pure-strategy existence the-
orem from Fudenberg and Tirole (1991, Theorem 1.2),
rephrased for our purposes with a cost-minimization
criterion.

Theorem 1 (Fudenberg and Tirole 1991). Consider a
strategic-form game, whose strategy spaces are nonempty
compact convex subsets of a Euclidean space. If the payoff
functions J i are continuous in all players’ strategies, ¶Y ,
and quasi-convex in Y i, then there exists a pure-strategy
Nash equilibrium.

The following two theorems show the existence and
properties of the equilibria. Theorem 2 applies when p2 >
h241 −�5/� and Theorem 3 applies otherwise. Let us first
define the following:

Definition 3. • z1
n 2= arg minY 1¶z2

n−1−K1
J 1
n 4Y

11 Y 1 +K15.
• z2

n 2= arg minY 2 J 2
n 4Y

11 Y 25�Y 1=Y 2 06

• Bn 2=















8·X⊂<2 �X1¶X2¶X1 +K11X
1¶z2

n−1 −K19

for n>21

B for n¶20

Definition 3 describes three attributes of the model in
each period: z1

n is the retailer’s minimizing point, assuming
that the supplier will hold K1 units of inventory (the upper
edge of the band); z2

n describes the supplier’s minimizing
point; and Bn describes the subset of the band bounded
above by the supplier’s target stocking level. These points
will be later shown to be uniquely defined.

It is convenient to define equilibria in two steps. In the
first step we ignore a number of constraints defining fea-
sible states, namely X1 ¶ Y 1 ¶ X2 ¶ Y 2 ¶ X2 + K2, and
we incorporate only Y 1 ¶ Y 2 and Y 2 ¶ Y 1 + K1 (based
on Lemma 1). We will refer to such constructs as uncon-
strained response functions, r1

n4Y
25 and r2

n4Y
15, and uncon-

strained equilibria. In the second step, we incorporate all
the omitted constraints. Lemma 2 demonstrates the shape
of the unconstrained response functions, which is a critical
element of the inductional step in the proof of Theorem 2.
A specific period index has been suppressed in Lemma 2
since we are demonstrating the shape of the unconstrained
best response functions based on the properties of the func-
tions in any period. In Lemma 2, (a)–(d) are assumptions
that allow the derivation of desired properties of each firm’s
best response functions. Its proof is in the appendix.

Lemma 2. Consider constants U > 0 (upper bound) and
� > 0. Define B� 2= 8 ¶Y � Y 1 + K1 ¶ Y 2 ¶ Y 1 + K1 + �9.
Assume that Y 1 ¶U and

(a) J i4Y 11 Y 25 are continuous and convex in Y i, for i =
112 and ¶Y ∈B∩ 8Y 1 ¶U9; J 14Y 11 Y 25 is convex in Y 1 for
Y 1 +K1 ¶ Y 2 ¶U +K19;
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(b) J i is separable within the band, i.e., J i4Y 11 Y 25 =

J i14Y 15+ J i24Y 25 for ¶Y ∈B∩ 8Y 1 ¶U9;
(c) J 11 and J 22 are convex with minima at z1 and z2,

respectively; and
(d) z1 2= arg minY 14J 14Y 11 Y 1 + K155, z

1 ¶ z1 ¶ U , and
there exists � > 0 such that arg minY 1 J 14Y 11 Y 25 is con-
stant in Y 2 for z1 +K1 ¶ Y 2 ¶ z1 +K1 +� and ¶Y ∈B�.

Then, the best response functions are r24Y 15 = z2 �

6Y 11 Y 1 + K17, r14Y 25 = z1 � 6Y 2 − K11 Y
27 for Y 2 ¶ z1 +

K1 and r14Y 25 = z1 for z1 + K1 ¶ Y2 ¶ z1 + K1 + �, and
r14Y 25 < Y 2 −K1 for z1 +K1 +�< Y 2 ¶U −K1.

Potential cases considered in Lemma 2 are illustrated in
Figure 1: in the top graph (A) the equilibrium up-to levels,
z1 and z2, intersect outside the band; in the center graph (B)
they intersect within the band; and in the bottom graph (C)
the supplier up-to level is within K1 of the retailer’s myopic
level, z1 = y∗

my . Consider Figure 1(A). The solid black line
shows the unconstrained best-response function of the sup-
plier. It is clearly limited to the band, based on Lemma 2.
Since the supplier’s cost functions are minimized at z2, the
response function remains as close to that level as possible
while staying within the band. The retailer’s best response
function, shown as a solid grey line, is partly within the
band. The retailer’s one-period costs are minimized at z1,
and her best-response attempts to stay within the band, as
long as such behavior decreases the retailer’s cost, while
knowing that the supplier has no incentive to depart from
the band. However, for higher levels of supplier inventory,
the retailer’s incentives change, and there exists a level z1

above which she will never order. Notice the interval over
which the two best-response functions overlap, indicating
the existence of multiple equilibria. Multiple equilibria lead
to ambiguity as to the appropriate value of a cost-to-go
function. We later show (Theorem 2) that the supplier and
retailer both prefer the same equilibrium thus removing this
ambiguity; we formally use Pareto refinement to identify
this equilibrium. When utilizing Lemma 2 within Theo-
rem 2, z1 will be become z1

n, etc.
Without salvage value functions, the equilibrium up-to

levels may be increasing in the horizon length, as in a con-
ventional single-installation inventory model. This presents
a possibility of the starting inventory in period 1 being
above the period 1 equilibrium, which may lead to a loss
of convexity for the following two reasons. First, as we
illustrate in more detail below, a change in X2 modifies the
feasible region and requires that the operand needs to be
convex in both Y 1 and Y 2. Second, above the equilibrium
the cost functions are not convex. The cost function of the
supplier echelon inventory is always flat as a function of
the retailer’s inventory, below the equilibrium base-stock
levels. However, for the inventory above the up-to levels,
the cost functions will decrease in the other firm’s initial
inventory. The technical implication of this is that the con-
vexity of the cost functions is no longer guaranteed except
below the equilibrium up-to levels. Thus, the motivation for
the equilibrium up-to levels to decrease monotonically in

Figure 1. The “unconstrained” response functions for
the retailer (thick grey line) and the supplier
(thick black line).

z 2

z 2

Y 1

Y 1

Y 2

Y 2

z1

z1

z 2

Y 1

Y 2

z1 z1

z1

z1

(A)

(B)

(C)

Notes. The top graph (A) applies when z1 ¶ z2 −K1, the center graph (B)
when z1 > z2 − K1 > z1, and the bottom graph (C) when z2 − K1 ¶ z1.
(Note that we always have z2 ¾ z1.)

the horizon length towards the steady-state levels, so that
starting inventory levels in the next period are below the
equilibrium levels. We show the monotonicity of equilib-
ria in the following theorem through the usage of salvage
value functions.

Theorem 2 demonstrates the equilibrium structure and
the monotonicity of the equilibrium up-to levels and the
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separability of the value functions within the band. When
we discuss separability, we express it as a function of the
initial or ending inventories and claim separability of those
functions in the range up to the target levels. When refer-
ring to separability, we do not imply one-period cost min-
imization but instead minimization across multiple-period
cost functions, which take advantage of the equilibrium
policy structure in future periods and separability of costs
to go. Separability in the context of our model (capacity
limited two-echelon inventory game) is not trivial but is
driven by the interaction of the following: the feasibility
set (physical constraints), the equilibrium behavior of both
players in the future, and the anticipation of economically
justified responses. Furthermore, separation does not take
place outside of what we label the band, and not above
the equilibrium levels. Recall that z1

n and z2
n are defined in

Definition 3.

Theorem 2. Assume p2 > h241 − �5/�. Let salvage
value functions S1

04 ·X5 = �14X
1 − �15

2 and S2
14 ·X5 =

�24�2 −X25+. There exist �11�21 �11 and �2 such that for
each starting inventory ·X ∈Bk:

(i) Using Pareto refinement, there exists a unique pure-
strategy Nash equilibrium, which is a modified echelon
base-stock policy, in period k;

(ii) V
j
k 4 ·X5= V

j1
k 4X15+V

j2
k 4X25 for j = 112; and

(iii) z
j
k+1 ¶ z

j
k for 4j = 11 k¾ 15 and 4j = 21 k¾ 25.

To facilitate the understanding of the proof of Theo-
rem 2, we provide the following “roadmap.” The formal
proof is in the electronic companion which is available as
part of the online version at http://or.journal.informs.org/.

Roadmap to Theorem 2. The proof of Theorem 2 is by
induction, similar to proofs in dynamic programming mod-
els. Since the induction step captures the most important
logical elements, it is done first, while the basis step is the
last element of the proof.

Induction step: For period n− 1, the convexity and sep-
arability of each value function, for each decision variable,
for portions of the feasible region is assumed. Similarly,
we assume existence and ordering of the equilibrium order
up-to levels for period n − 1. These properties will then
be demonstrated for period n. The existence of the equi-
librium is established based on Theorem 1 4due to the
convexity in each firm’s own variable, continuity in both
firms’ variables, and compactness in the strategy spaces5.
When there are multiple equilibria, we demonstrate they
are Pareto improving for increasing echelon inventories and
thus both the supplier and retailer choose the same equilib-
rium. (Details are explained in the next bullet points.)

• Unconstrained response functions and equilibria:
Recall that the unconstrained response functions ignore
inventory constraints but do observe the supplier’s eco-
nomic incentive to operate within the band. Based on the
convexity of the value function operand 4induction assump-
tion for period n− 15, the results of Lemma 2 apply. Fig-
ure 1 demonstrates the three possible positions of response

functions. When the firms’ best-reply functions overlap at
the upper edge of the band (Figures 1(A) and 1(B)), all
these points represent legitimate equilibria. We establish
that the cost functions of both the supplier and retailer
decrease in their own and the other firm’s inventory for
overlapping portions of the response functions. Thus Pareto
refinement implies that they both will choose the same
unconstrained equilibrium.

• Constrained equilibria: The next step demonstrates
the main result (the solution is a modified echelon base-
stock policy) and also the separability of the value function
and the convexity of the value function operands over cer-
tain portions of the state space. This is achieved by using
the structure of the solution in period n − 1 and is car-
ried through to period n. The unconstrained response func-
tions are now limited by the feasible regions (illustrated as
rectangles in Figure 2), and thus the constrained equilibria
will be contained within these feasible regions, which are
defined by the period’s initial echelon inventory position.
The constrained equilibria are denoted by the solid circles
in Figure 2.

• Ordering of derivatives and up-to levels: To show the
monotonicity of the equilibrium up-to levels, we show that
the derivatives of the value function operands are ordered.
Specifically, if the derivative of the cost function in one
period exceeds that in the following period 4in our con-
vex model5, the up-to levels will increase as time moves
forward. We separate the analysis into three parts corre-
sponding to each of the cases in Figure 1. The state space is
divided into multiple regions between the equilibrium up-to
levels in periods n− 1 and n, corresponding to seven pos-
sible reference inequalities in the online appendix, 4A015 to

Figure 2. Each rectangular area represents a feasible
region for different initial echelon inventory
positions.

z 2 –K 1

z2

Y 1

Y 2

Notes. The left-lower corner of each rectangle represents the initial ech-
elon inventory, ·X. The feasible area is defined as 4Y 11 Y 25 ∈ 6X11X27 ×

6X21X2 +K17. Consider the most left of the three rectangles: all the points
4Y 11 Y 1 +K15 for Y 1 ∈ 6X11X27 are equilibria, but the point 4X21X2 +K15

(represented by the solid circle) is a dominating equilibrium, as the costs
of both echelons are lowest there among all equilibrium points.
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4A075. We demonstrate the same derivative dominance for
the value function operand in period n+ 1.

• Independence of the best response outside the band:
We show that the retailer’s best-reply function rises ver-
tically from the upper edge of the band at Y 1 = z1. This
technical property guarantees that the response function
departs from the upper edge of the band and stays away
from the band, thus uniquely identifying the equilibrium
4since r2 is contained in the band5. If this were not the
case, the response functions could potentially overlap on
the upper edge of the band with conflicting directions 4the
retailer’s costs decreasing and the supplier’s costs increas-
ing in Y 1 over 4Y 11 Y 1 +K155, thus destroying our use of
Pareto improvement.

Induction basis: The final part of the proof establishes
the basis for the induction, taking place over two peri-
ods, 1 and 2, instead of a single period. The reason for this
is that in period 1 4the last period5, the supplier will order
nothing as he will receive no further orders. The actual
decisions of the supplier that we capture are analyzed start-
ing in period 2. The salvage value functions allow the ini-
tial ordering of the equilibria as well as satisfy all other
conditions 4ordering of derivatives5. Applying the retailer’s
salvage function generates a finite period 1 cost minimizer
at a point above the myopic minimizer, yielding the nec-
essary results for the retailer. This minimizer establishes
the translation factor 4�25 for the supplier’s salvage value
function, applied in period 1. The necessary results are then
determined for both the retailer and supplier in period 2.

The following theorem holds for p2 ¶ h241 − �5/�,
that is, where the unit holding cost exceeds the discounted
infinite sum of penalty costs for the supplier. The structure
of the equilibrium policy, while similar to that of Theo-
rem 2, has the supplier never ordering goods, resulting in
a much simpler analysis. However, the retailer wishes to
bring her inventory position to the newsvendor level. Thus,
the firms’ desired inventory positions are incompatible. The
proof to Theorem 3 appears in the online appendix.

Theorem 3. If p2 ¶ h241 − �5/� for each starting inven-
tory ·X ∈B S1

04 ·X5= 0 and S2
14 ·X5= 0, there exists a unique

pure-strategy Nash equilibrium where the retailer orders
up to a myopic base-stock level, y∗

my , if possible, and the
supplier orders no goods at all. Also, V i

n4 ·X5 = V i1
n 4X15+

V i2
n 4X25 for i = 1121 and n> 0.

Now we present a result (the proof appears in the online
appendix) demonstrating how the equilibrium up-to levels
change with the economic parameters and the constraining
capacity.

Theorem 4. The equilibrium up-to levels are non-
increasing when K11 h1, or h2 increase or when p1 or p2

decrease.

The final analytical result pertains to the applicability of
the finite-horizon equilibrium policy to the infinite horizon.

While extending finite-horizon results to the infinite hori-
zon has become fairly standard in in traditional DP settings
with one decision maker, it is not quite the case in game-
theoretic settings. It is possible, however, to lean on some
of the convergence results in the economics literature, as
described below.

For the remainder of this section, we will count time for-
ward (with an increasing index). To avoid confusion, we
will use an index T rather than the n used previously for
counting time backwards. We use the following standard
terminology applied to our setting. The strategy space trun-
cated at period T will be labeled S4T 5.

Definition 4. g∗ ∈ S4T 5 is an �-perfect Nash equilib-
rium if for each time 0 ¶ s ¶ T , history x, strategy g ∈

S4T 5, and player i, V i4xs4g∗55 − V i4xs4gi1 g∗−i55 ¶ �. 0-
perfect Nash equilibrium will be labeled a perfect Nash
equilibrium.

The following result comes from Fudenberg and Levine
(1983) (hereafter FL83), and it will be used directly in the
proof of Theorem 6. While Theorem 3.3B of FL83 assumes
a deterministic game, footnote 2 on page 253 of §6 in FL83
states that the results hold for stochastic systems.7

Theorem 5 (Fudenberg and Levine 1983, Theo-
rem 3.3B). Suppose V is uniformly continuous. A neces-
sary and sufficient condition that g∗ be perfect in S4�5
is that there be sequences �k1 T 4k5, and gk such that gk is
�k-perfect in S4T 4k55 and as k → �, �k → 0, T 4k5→ �,
and gk → g∗.

Theorem 6. The MEBS equilibrium policy shown for the
finite-horizon is also the equilibrium policy in the infinite
horizon for � ∈ 60115.

Proof. We will use Theorem 5. Specifically, we will
demonstrate that the following sufficient conditions are
satisfied: (i) the value function is uniformly continuous;
(ii) �k → 0; (iii) gk → g∗, where gk is �k-perfect in S4k5.
gk denotes an �k-equilibrium for a k period problem, within
S4k5 the space of strategies, and g∗ is the perfect equilib-
rium in the infinite horizon.

For our purposes, we will choose an arbitrary
sequence �k monotonically decreasing to zero and (ii)
trivially holds. We will show that (iii) holds for any
arbitrary � > 0. Convergence of policies (and of equilib-
ria) is in the same topology as in FL83, where the dis-
tance between policies v and w is defined as d4v1w5 2=
supT 641/T 5min8� ¶Y 4v1 T 5− ¶Y 4w1T 5�1197, v is policy, and
¶Y 4v1 T 5 is the state in period T when following policy v.
This distance notation may accommodate any of the stan-
dard metrics: sum of absolute differences (“Manhattan dis-
tance”), maximum of absolute differences (we use a mod-
ification of this, adopted directly from FL83), and square
root distance.

For (iii), we need to first define g∗. gk is the (per-
fect) equilibrium for the k-period game defined by targets
4z1

k1 z
2
k5 in the corresponding MEBS policy. Let 4z1∗1 z2∗5 2=

limk→�4z
1
k1 z

2
k5 for k¾ 2, which exists due to monotonicity
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and boundedness of 4z1
k1 z

2
k5, and let g∗ be the correspond-

ing MEBS policy. For an initial starting point ·X1 in period 1
and a demand sample path d11 d21 0 0 0 1 di−1, denote ¶Yi =

gi4 ·X11 d11 d21 0 0 0 1 di−15 and ¶Y ∗
i = g∗4 ·X11 d11 d21 0 0 0 1 di−15.

We will show that gk → g∗. Consider any � > 0. We
will take advantage of the fact that the distance metric
does not exceed 1. We will define T and m such that
� ¶Yi − ¶Y ∗

i � < � for period i = 11 0 0 0 1m, while for periods
i = m + 11 0 0 0 1 T , we have 1/4T − m5 < � implying
that min8� ¶Yi − ¶Y ∗

i �119/4T − m5 < �. Specifically, we
choose period m such that zjm − zj∗ < �, for j = 112,
and 1/m < �. Let T ¾ 2m. For the first m periods,
we have by induction (j = 112): Y

j∗
i ¶ Y

j
i ¶ Y

j∗
i + �,

z
j∗
i ¶ z

j
i ¶ z

∗j
i + �, and X

j∗
i+1 ¶ X

j
i+1 ¶ X

j∗
i+1 + �. This

implies that the inventory differences are smaller than
the difference in z’s which are smaller than �, i.e.,
41/i5min8� ¶Yi − ¶Y ∗

i �119¶ � ¶Yi − ¶Y ∗
i � < � for i = 1121 0 0 0 1m.

For the later periods 1/i ¶ 1/4T − m5 ¶ 1/m < �. Thus,
d4 ¶Y 1 ¶Y ∗5 ¶ � for T ¾ 2m. This establishes the required
convergence gk → g∗ (we have used strong sample-path
bounds here that are independent of demand realiza-
tions). To show (i) that the value function is uniformly
continuous, it is sufficient to show that �vk − wk� → 0
implies �V 4vk5 − V 4wk5� → 0, where total cost V 4v5 is
expressed as a function of ordering policy v. This is
straightforward due to the combination of the following
three factors: the definition of distance between strategies,
linearity of costs, and capacity constraints. Specifically,
let � > 0, and let m0 2= �1/�� − 1. �vk − wk� < � implies
that for i ¶ m0, � ¶Y 4v1 i5 − ¶Y 4w1 i5� < i�. For i > m0, due
to the capacity constraint, we have � ¶Y 4v1 i5 − ¶Y 4w1 i5� <
m0� + 4i − m05K1. This implies that �V 4vk5 − V 4wk5� ¶
4h1 + h2 + p56

∑m0
i=1 �

i−1i� +
∑�

i=m0+1 �
i−14m0� +

4i − m05K157 = 4h1 + h2 + p56
∑m0

i=1 �
i−1i� + �m0 ·

∑�

i=1 �
i−14m0� + iK157 ¶ 4h1 + h2 + p56�/41 − �52 +

�m041/41 − �5 + K1/41 − �5257 (as m0� ¶ 1). Clearly,
as � → 0 we have �m0 → 0, and uniform continuity
follows. �

4. Remarks
In this section we discuss some variants of our model and
the corresponding results.

• Longer supply chains: A natural question is whether
the current two-installation model can be extended to three
or more installations. The enabling result, Lemma 1, fails
for serial systems greater than two installations. The equi-
librium dominance for the upstream installations which
maintain stocking levels of K1 or less, can no longer be
guaranteed. Without this result, the primary result, Theo-
rem 2, cannot follow.

• Leadtimes: We assume that delivery leadtimes are
“natural” (or single period) leadtimes upstream of both the
supplier and retailer. As aptly illustrated by Glasserman and
Tayur (1994), leadtimes upstream of the supplier effectively
mimic additional installations with single-period leadtimes,

and as discussed in the preceding discussion point, supply
chains of greater than two echelons cannot easily be ana-
lyzed. Leadtimes which are integer multiples of the period
can be incorporated between the supplier and retailer,
which might be representative of an outsourcing situation
where, say, an Asian-based supplier is upstream of a U.S.-
based retailer.

• Capacity constraints vs. storage constraints: In a one-
period setting the production capacity constraints could be
interpreted as storage limits. This equivalence does not hold
for longer horizons, but storage limits actually would be
far easier to characterize and analyze since they merely act
as a limit upon the up-to decision variables as currently
formulated in §2.

• Common knowledge assumptions: The current infor-
mational requirements of the system are that each firm
knows the beginning inventory levels of themselves and
the other firm. Given the decentralized nature of the prob-
lem, the obvious question is whether sufficient informa-
tion can be contained in the retailer’s orders. Cachon and
Zipkin (1999) consider a decentralized model with infinite
capacities. In their model, both the supplier and retailer
have access to demand information (or equivalently retailer
inventory) right away. Otherwise, the supplier would learn
about demand with a one-period delay. We assume, as
in Cachon and Zipkin (1999), that demand information
is available immediately to both the retailer and supplier.
Note that with capacity constraints, the actionable knowl-
edge might remain the same as in Cachon and Zipkin
(1999). The choice of ordering policy, however, influences
the information passed. Assume temporarily that the target
stocking levels are stationary and consider three different
implementations. The retailer may (i) reorder up to her tar-
get level, (ii) simply order the last observed demand, or
(iii) truncate the order to the capacity level. Clearly in case
(i), all information about demand is passed to the supplier,
as it is per definition in case (ii). In case (iii), the retailer’s
orders are sometimes truncated by the capacity. Despite the
order truncation, the actions of the supplier are not always
unduly influenced: when demand is larger than capacity,
the supplier will not order more than capacity. However, if
the difference between the supplier’s and retailer’s echelon
stocking targets is less than capacity, there will be instances
when the supplier’s orders will not reflect all the demand
information since he will stock to a local level less than
capacity. Clearly, with target levels decreasing in the hori-
zon length, the same logic holds, but the supplier needs
to compensate for the difference between successive tar-
get levels. Thus, the specifics of the implemented ordering
policy may influence the transfer of information.

• Lower capacity at the supplier: The sufficient condi-
tions for the existence of an equilibrium (functional con-
vexity) disappear when the smaller of the capacities is held
by the supplier. Given the lack of easy-to-describe structure
for the centralized version of the problem, it is not entirely
surprising that convexity does not hold in the decentralized
supply chain.
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• Coordinating mechanisms: While we do not explicitly
seek coordinating contracts but merely consider enhance-
ment of channel efficiency, we are aware that this is an
active research area. Cachon and Zipkin (1999) have shown
that a three-parameter contract can coordinate in an unca-
pacitated two-echelon system. Clearly, three parameters are
sufficient to coordinate a capacitated system. Consider, for
example, sharing each firm’s physical inventory cost and
each firm sharing the retailer’s backlog cost in the same
proportion. Since such a contract is equivalent to total cost
sharing, these contracts are considered complicated, are
resisted, and are not observed in practice, to the best of our
knowledge.

5. Numerical Examples
In this section we consider some numerical examples drawn
from solving the model for sample data. In all the examples
we use discretized probability distributions approximating
a normal distribution with a mean of 9.8 with different
values of variance and various levels for the discount fac-
tor, �. The models were iterated until both firms’ value
functions converged to within a margin of 0.005 (differ-
ence between subsequent periods). For all the following
examples, we assign h1 + h2 = 1 and � = 0095. In all the
numerical examples, the echelon base-stock levels of the
decentralized system were always lower than the echelon
base-stock levels of the integrated system. This suggests
competition reduces channel stocks, an observation com-
patible with the well-known double marginalization result.
We present the results using relative additional cost which
is defined as the percentage of the decentralized total cost
over the integrated total cost.

First, consider Figure 3(a) which shows how the rela-
tive additional cost varies across the split � of the total
unit penalty cost (p = p1 + p2, p1 = �p, p2 = 41 −�5p) in
the system for various values of the total penalty cost. We
observe a high degree of consistency in percentage value
above the integrated cost, for a wide range of total penalty
values p from 1 to 50. Although not shown, this degree of
consistency is maintained for far greater values of p also.
This implies that the system’s total cost is relatively inde-
pendent of the values of the total penalty, for nonextreme
values of �. We also observe for many parameter combi-
nations that the efficiency can be shown to get to 5–10%
above the integrated cost, establishing fairly efficient solu-
tions of the system through the natural operation of the
decentralized channel. Clearly, at extremely low values of
� (the retailer’s share of the total penalty), it is not in the
retailer’s interest to hold inventory; thus the customer is
poorly served. At extremely high values of �, the retailer
absorbs the bulk of the penalty costs but the inefficiency
costs are not nearly as costly as for low values of �, imply-
ing that the retailer perhaps has more control over the sup-
ply chain.

A third observation from Figure 3(a) is the relative flat-
ness of the curves across a broad range of values of �

Figure 3. The effect of penalty split across parameter
values (K1 = 101�= 0095).
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(the horizontal axis). The direct implication of this is that
“good” solutions (closer to first-best) may be achieved for
a variety of the allocations of the total penalty (p1 + p2)
between the supplier and the retailer. So while a contract
to coordinate the system may be difficult to find, let alone
enforce, the system may be reasonably close to the coor-
dinated one if the economic values of not satisfying cus-
tomers for the supplier and retailer happen to fall in a
fairly broad range of penalty allocation. Finding these eco-
nomic values of not satisfying customers may be difficult to
determine accurately. Fortunately, we observe a robustness
in � indicating such a determination may not be neces-
sary. While there is some mutual interest in avoiding the
penalty cost, on the other hand, there is an incentive for
shirking an effort related to holding inventory. The lower
inventory levels for the decentralized system, compared to
the centralized one, confirm this. Interestingly, despite the
incentive for each firm to shirk effort and their potential
lack of clarity about their respective responsibility for the
backlogging penalty, the “decentralization” penalty upon
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the channel profits is not overwhelming. The attractive-
ness of this observation is that no third party (“principal”)
needs to impose their will upon the players in the system
or attempt to force potentially unwilling players to sign a
contract to coordinate the system; a reasonably good sys-
tem solution is achieved merely from the normal operation
of the supply chain.

In Figure 3(b) the unit holding cost of the supplier, h2, is
varied from 0.1 to 0.9 while the unit holding cost of the
retailer is kept constant, h1 +h2 = 1. Note that a wide range
of this ratio (between 0 and 100%) is driven by a possibil-
ity that a different portion of the value-added activities are
performed in one of these two stages. As in Figure 3(a),
the additional system cost relative to the integrated cost is
plotted against the penalty split, �. What we first observe
is that at lower values of �, the inefficiency is higher, as
before. The curve with the highest cost here (at � = 0005)
is h2 = 001, and the relative costs decrease as h2 increases.
At the other end of the scale (at � = 0095), the sequence
of the curves is reversed. A potential explanation for the
ordering at each extreme value of � is that there is an
imbalance of the values of the parameters. For example, at
� = 0005, when h2 = 001, the ratio of holding to penalty
cost is low for the supplier while it is high for the retailer,
so the system becomes unresponsive to customers, driving
up costs; when h2 = 009 and � = 0095, both of the ratios
are very different and incentives are again misaligned—for
example, the retailer anxious to carry extra stock faces an
unmotivated supplier. A further observation is that gener-
ally the curves appear to be fairly closely aligned across the
scale of � for nonextreme values and that there is a great
deal of “flatness” of the curves (loosely speaking), imply-
ing a robustness with respect to �, a desirable property as
indicated earlier.

In the next few charts, we consider the effect of varying
the capacity constraint (in these examples, the mean of the
distribution is 9.8 and the standard deviation is about 4,
resulting in a coefficient of variation of over 0.4). Fig-
ure 4(a) shows that at the extreme values of � the more
constrained systems (lower values of K1) have higher rel-
ative additional system costs, but as the penalty costs are
shared more equitably, these more constrained decentral-
ized systems have lower relative additional system costs
than the less constrained systems. There are two potential
reasons for the players to attempt to coordinate: (1) they
are both sharing the backlogging costs, and thus have an
incentive to satisfy customers’ demand; and (2) there are
fewer alternatives, and this forces the retailer and supplier
to coordinate even more closely.

This effect of having a tighter constraint which results
in closer-to-coordinating behavior is not initially intuitive.
In Figure 4(b), we find that the most constrained system
(K1 = 10) has the highest absolute costs. In most cases,
while the “decentralization” penalty is small for a tight
capacity, it does not imply low costs in absolute terms. In
the centralized system, we observe the systemwide costs

Figure 4. The effect of penalty split for various
capacity levels (p1 +p2 = 1, h2 = 009,
�= 0095).
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are monotonically increasing as the constraining capacity
(K1) decreases. In the decentralized system, this property is
frequently true. However, we have observed circumstances
when a tightening capacity may actually decrease absolute
total system costs, as seen in Figure 4(b) when comparing
the K1 = 11 and K1 = 12 curves.

In Figure 5(a) we have duplicated two of the curves from
Figure 4(a), namely those for K1 = 10 and K1 = 11. We can
observe the effect more clearly where the K1 = 10 curve
reaches closer to the integrated model cost for intermedi-
ate values of � while the K1 = 11 curve has lower relative
costs for extreme values of �. In Figure 5(b), these total
cost curves from Figure 5(a) are separated for each player,
and displayed as a percentage of the total system costs.
First, the supplier’s share of the total cost curves decreases
and the retailer’s share of the total costs increases as �
increases, as we expect. However, a more interesting obser-
vation is that as there is an increase in capacity from K1 =

10 to K1 = 11, both players’ absolute costs decrease. But
the retailer’s share of the total cost decreases and supplier’s
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Figure 5. The effect of penalty split for K1 = 10 and
K1 = 11.
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share of the total cost increases. An intuitive explanation
for this could be that since the retailer is not constraining
the system as much as before, she should not carry as
much of the cost burden (similar to the induced penalty
cost functions in Parker and Kapuściński 2004). We can
consider the holding and penalty costs of each player. The
total holding costs for the retailer will go down since she
does not need to hold as much safety stock, and her total
penalty costs will decrease since she will be able to satisfy
the customers more easily since the capacity will not be
limiting the flow of stock through the system. For much
the same reason, the supplier’s total penalty costs will be
reduced also. However, there is ambiguity as to whether
the supplier’s holding costs will increase or decrease. They
could increase as the larger capacity allows more material
to be processed. They could also decrease similarly to the
decrease in the retailer’s base-stock level. Clearly, the sum
of the supplier’s holding and penalty costs (as a share of
the total) increase as the capacity increases.

6. Conclusion
In this paper we model a decentralized serial two-stage
multiechelon inventory system with capacity constraints
and stochastic demand. Using the Markov Equilibrium
solution concept, we demonstrate the existence and
properties of the equilibrium policy of our model in a
multiple-period context. The equilibrium policy is a modi-
fied echelon base-stock policy, identical in structure to the
optimal policy in the centralized system. The modifica-
tion is where the inventory levels are naturally restricted
to a band of the state space. While the usual convexities
are lost in this competitive framework, we utilize salvage
value functions to generate base-stock levels monotonically
decreasing in the length of the horizon, and we establish
existence of either a unique equilibrium or Pareto domi-
nating equilibria in every period. There are some subtle
differences depending on the value of the supplier’s unit
penalty cost. Specifically, when the supplier’s penalty cost
is sufficiently small, the supplier will stock no inventory at
all and the retailer will attempt to order up to the myopic
level. We formally show that the equilibrium echelon base-
stock levels are nonincreasing when K1 increases, when h1

or h2 increase, or when p1 or p2 decrease.
In a numerical study, we evaluate the behavior of the

decentralized system and compare it to the first best. It
appears that the penalty costs (p1 + p2) and split of the
penalty costs (�), for nonextreme values, do not affect the
relative total costs greatly, but the capacity limits do and in
interesting ways. It appears that a tighter capacity can coor-
dinate the system quite effectively by forcing the players
to cooperate more closely, resulting in a total system cost
closer to that of the integrated model. Thus, through the
natural operation of the supply chain, some enhancement
(not coordination) of the channel efficiency is observed
through tighter capacity, rather than attempting to apply a
coordinating contract.8 We observe that, the decentraliza-
tion penalty is not heavily influenced by the split of the
penalty between the players, suggesting reasonably robust
predictions of the efficiency gap. Altogether, the numeri-
cal study reinforces the importance of explicitly modeling
the capacity constraints rather than merely taking an unca-
pacitated model as an approximation to a capacity con-
strained one.

7. Electronic Companion
Online appendices are available in the electronic compan-
ion to this paper, which is available as part of the online
version at http://or.journal.informs.org/.

Appendix A. Additional Proofs
Lemma 1. Consider a system with beginning inventory
X2

n − X1
n ¶ K1 for K1 ¶ K2. When the set of equilibria is

nonempty, a feasible policy, such that Y 2
n −Y 1

n >K1 for any
n, cannot be an equilibrium.
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Proof. This proof is by sample path. Assume there exists
a feasible dominant policy �, such that for a certain n,
Y 2
n − Y 1

n > K1. Choose the minimal n for which this con-
dition takes place, i.e., Y 2

m − Y 1
m ¶ K1 for all m < n. We

show that � cannot be a dominant equilibrium policy by
constructing the following alternate policy, � ′, Y 2′

n − Y 1
n =

K1 and Y 1′

n = Y 1
n and � ′ = � for all future periods (the

variables under policy � ′ are denoted with the ′ notation).
Specifically, the supplier orders a smaller amount in period
n under policy � ′ compared with policy � (a2

n − a2′

n =

Y 2
n − Y 2′

n ), but he compensates in period n− 1 by ordering
more, resulting in the same inventory levels at the end of
period n − 1 under both policies. Notice that the policies
are identical from period n − 2 onwards. The actions in
period n− 1 are not the same, but these result in the same
ending inventories at the end of period n− 1.

Recall from the formulation in §2 that a’s denote the
amount ordered. To check the feasibility of � ′, we need
to check the following aspects of � ′ that differ from �:
(i) a1

n−1 ¶ x2′

n−1, (ii) a1
n−1 ¶ K1, (iii) a2′

n ¶ K2, and (iv)
a2′

n−1 ¶ K2. (ii) is established from the feasibility of �.
Y 2′

n <Y 2
n implies that

a2′

n <a2
n ¶K21

yielding (iii). Since x2′

n−1 =K1 and from (ii), (i) is satisfied.
Since x2′

n−2 = x2′

n−1 − a1
n−1 + a2′

n−1 ¶K1, and x2′

n−1 − a1
n−1 ¾ 0

from (i), a2′

n−1 ¶ K1 ¶ K2, satisfying (iv). Thus � ′ is
feasible.

Because the total costs (for the current and future peri-
ods) for player 2 satisfy

Cost24�5− Cost24� ′5= h24x
2
n−1 −K15 > 0

while player 1’s inventory (or backlog) level are identical
between policies � and � ′ at the beginning of period n−1,
this results in identical costs thereon. Thus, the supplier can
improve his costs under policy � by reducing his stocking
level to K1 without affecting the availability for the retailer,
and therefore � cannot be an equilibrium. �

Lemma A.1. Consider a single echelon with a capacity
limit K, incurring unit holding and backlogging costs, h
and p, stochastic demand D, and periodic cost, L4y5 =

hE64y − D5+7 + pE64D − y5+7. Let V04x5 = �4x − �52

be a salvage value function in period 0 and � > 0 and
� > 0. Define the myopic minimum y∗

my 2= arg miny L4y5,
y∗
n 2= arg miny Jn4y5, Jn4y5 2= L4y5+�E6Vn−14y−D57, and
Vn4x5 = minx¶y¶x+K Jn4y5, where 0 <�< 1 for n¾ 1. For
a chosen � ∈ 401 h/45, let �0 be such that L′4�05 > h− �,
and �1 such that for all � ¾ �1, we have L′4�5−

∫ �

K
L′4� +

K − D5f 4D5dD < �. Setting (a) � = max4y∗
my1 �01 �15 +

E6D7 and (b) �= h/44�E6D75, then
(i) Vn−1 is convex;
(ii) Jn is convex;

(iii) J ′
n+14x5¾ J ′

n4x5 for x¶ y∗
n; and

(iv) y∗
n+1 ¶ y∗

n.

Proof. (Intuition: A value of � is chosen to be sufficiently
high in the salvage value function to generate a final period
minimizer that is large enough for the monotonicity of the
up-to levels.)
V0 clearly satisfies (i). If Vn is convex, due to the convex-

ity of E6Vn4y −D57 and L4y5, Jn+1 is also convex, which
immediately implies convexity of Vn+1. Thus (i) and (ii)
hold for all n. Also note that, for any n, (iii) implies (iv).
Thus we only need to justify (iii).

Since J1 and J2 are convex, we need only show that
J ′

24y
∗
15¾ 0 satisfies (iii). Since L′4�05 > h − � and (a)

and (b), we have L′4y∗
15= −2��4y∗

1 −� − E6D75¶ h from
the period 1 first-order condition, thus y∗

1 >�−E6D7. Note,
L′ is a monotone nondecreasing function with limit h, thus
establishing the existence of �1 (as L′4�5 and the weighted
average of L′4� −D5, both increase and converge to h, the
difference converges to 0 and is guaranteed not to exceed �
for sufficiently high �’s). We are interested in the territory
y ¶ y∗

1 :

J24y5= L4y5+�
∫ �

0



















J14y+K −D5
y−D< y∗

1 −K

J14y
∗
15
y∗

1 −K ¶ y−D¶ y∗
1



















f 4D5dD

= L4y5+�

{

∫ �

y−y∗
1 +K

J14y+K −D5f 4D5dD

+

∫ y−y∗
1 +K

0
J14y

∗

15f 4D5dD

}

1

J ′

24y5= L′4y5+�
∫ �

y−y∗
1 +K

8L′4y+K −D5

+ 2��4y+K −D−� − E6D759f 4D5dD

−�J14y
∗

15f 4y− y∗

1 +K5+�J14y
∗

15f 4y− y∗

1 +K50

Thus,

J ′

24y
∗

15=L′4y∗

15+�
∫ �

K
8L′4y∗

1 +K−D5

+2��4y∗

1 −E6D7−�+K−D59f 4D5dD

=L′4y∗

15+�
∫ �

K
8L′4y∗

1 +K−D5−L′4y∗

15+L′4y∗

15

+2��4y∗

1 −E6D7−�5+2��4K−D59f 4D5dD

¾4h−�5+�4−�5+0+�4−h/251

which will be positive for � < h/4.
Assume (i) through (iv) hold in period n − 1. Note

that definition of Vn−1 combined with convexity of Jn−1

implies that V ′
n−14x5= max4min4J ′

n−14x+K51051 J ′
n−14x55.

Therefore, (iii) immediately implies that we have V ′
n4x5¾

V ′
n−14x5 for x¶ y∗

n−1 and, therefore, also for x¶ y∗
n ¶ y∗

n−1

and (iii) and (iv) follow. �
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Lemma 2. Consider constants U > 0 (upper bound) and
� > 0. Define B� 2= 8 ¶Y � Y 1 + K1 ¶ Y 2 ¶ Y 1 + K1 + �9.
Assume that Y 1 ¶U and

(a) J i4Y 11 Y 25 are continuous and convex in Y i, for i =
112 and ¶Y ∈B∩ 8Y 1 ¶U9, J 14Y 11 Y 25 is convex in Y 1 for
Y 1 +K1 ¶ Y 2 ¶U +K19;

(b) J i is separable within the band, i.e., J i4Y 11 Y 25 =

J i14Y 15+ J i24Y 25 for ¶Y ∈B∩ 8Y 1 ¶U9;
(c) J 11 and J 22 are convex with minima at z1 and z2,

respectively; and
(d) z1 2= arg minY 14J 14Y 11 Y 1 + K155, z

1 ¶ z1 ¶ U , and
there exists � > 0 such that arg minY 1 J 14Y 11 Y 25 is con-
stant in Y 2 for z1 +K1 ¶ Y 2 ¶ z1 +K1 +� and ¶Y ∈B�.

Then, the best response functions are r24Y 15 = z2 �

6Y 11 Y 1 + K17, r14Y 25 = z1 � 6Y 2 − K11 Y
27 for Y 2 ¶ z1 +

K1, and r14Y 25 = z1 for z1 +K1 ¶ Y2 ¶ z1 +K1 +�, and
r14Y 25 < Y 2 −K1 for z1 +K1 +�< Y 2 ¶U −K1.

Proof. Note that echelon 2 has no incentive to be out-
side the band B. Since J i4Y 11 Y 25= J i14Y 15+ J i24Y 25 for
¶Y ∈ B ∩ 8Y 1 ¶ U9 and J 22 is convex with minimizer z2,
we immediately have that, r24Y 15 = z2 � 6Y 11 Y 1 +K17 for
Y 1 ¶U .

Now consider the response function for echelon 1, r1.
We separately describe r1 (i) within B and (ii) outside the
band B, including B�.

(i) From (b) and (d) J 1 is separable and J 11 is convex
with minimizer z1, thus when r1 is within the band B, then
r14Y 25= z1 � 6Y 2 −K11 Y

27 for Y 2 ¶U +K1.
(ii) From (d) arg minY 1 J 14Y 11 Y 25 is constant in Y 2 for

¶Y ∈B�. Thus, for any Y 2, J 14Y 11 Y 25 decreases when Y 1 <
z1 and increases for Y 1 > z1. Since (from (a)) J 14Y 11 Y 25
is convex in Y 1, we immediately have that r14Y 25 = z1 �

6Y 2 − K11 Y
27 for Y 2 ¶ z1 + K1 and r14Y 25= z1 for z1 +

K1 ¶ Y 2 ¶ z1 +K1 +�. Due to (a) and (d), we also have
r14Y 25¶ Y 2 −K1 +�. �

Endnotes
1. The term “Markov Perfect Equilibrium” (MPE) is used
in some literature to emphasize that these equilibria are
subgame perfect.
2. Clearly, the state variables might include the whole his-
tory of decisions, and actions may depend on inter-temporal
properties of the firm’s own or the competitor’s behavior.
3. If a portion of the supplier’s backlog cost were a mon-
etary exchange, such a payment could be easily included
in the model by redefining the coefficients of the penalty
costs.
4. Allowing backorders at installation 2 without financial
penalty would lead to an equivalent dynamics, while com-
plicating the notation. We discuss this case in the Remarks
section (§4).
5. This is correctly defined. z1

1 is determined in the fol-
lowing period (period 1), thus in backward induction it is
already known (while in a natural setting it is deducible).

6. This minimization occurs across the second argument
for a specific value of the first argument. We subsequently
show within the proof of Theorem 2 that z2

n minimizes J 2

for all feasible values of Y 1.
7. This assertion is corroborated by Börgers (1989). This
is done by extending the result to games “in which Nature
may make moves that are not completely observable; we
will, however, continue to assume that the past actions of
the players are common knowledge” (FL83). The stochas-
tic game with no observability of actions requires the
constraining assumption of a finite-action space. Such a
restriction is not needed for full-information games, such
as ours.
8. Most of the time, decreasing capacity increases the
channel costs. There exist, however, cases where a tighter
capacity will decrease the total costs.
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