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Theorem 2 Assume p2 > h2(1 − β)/β. Let salvage value functions S1
0(X̃) = λ1(X

1 − γ1)
2 and

S2
1(X̃) = λ2(γ2−X2)+. There exist λ1, λ2, γ1, and γ2 such that for each starting inventory X̃ ∈ Bk:
(i) using Pareto refinement, there exists a unique pure-strategy Nash equilibrium, which is a

modified echelon base-stock policy, in period k;
(ii) V j

k (X̃) = V j1
k (X1) + V j2

k (X2) for j = 1, 2; and

(iii) zjk+1 ≤ zjk for (j = 1, k ≥ 1) and (j = 2, k ≥ 2).
Proof This proof is by induction. In addition to showing that the main conditions (i)-(iii) hold,
we also use the following conditions as a part of the inductional loop for Ỹ ∈ Bk: (iv) J1

k+1 is
convex in Y 1 for Y 1 ≤ z1k; (v) J1

k+1 is convex decreasing in Y 2 ≤ z2k, and decreasing in Y 2 ≥ z2k;
(vi) J2

k+1 is convex in Y 2; (vii) J2
k+1 is convex decreasing in Y 1 ≤ (min(z2k − K1, z

1
k), z

1
k)

+, and
decreasing in Y 1 ≥ (min(z2k−K1, z

1
k), z

1
k)

+; (viii) J i
k+1(Y

1, Y 2) = J i1
k+1(Y

1)+J i2
k+1(Y

2) for i ∈ {1, 2}
and z1k+1 := argminY 1 J11

k+1(Y
1); (ix) z1k+1 ≤ z1k+1; (x) ∂jJ

i
k+1(Ỹ ) ≥ ∂jJ

i
k(Ỹ ) for Y j ≤ zjk when

(i, j) ∈ {(1, 1), (1, 2), (2, 2)} and for Y 1 ≤ min(z2k−K1, z
1
k) when (i, j) = (2, 1); (xi) z1k+1 = y∗my; and

outside the band (xii) for Y 2 ≥ Y 1+K1, J
1
k+1 is convex in Y 1, J2

k+1 is increasing in Y 2, ∂1J
1
k+1 ≤ 0

for {Y 1 + K1 ≤ Y 2 ≤ z1k+1 + 2K1, Y
1 ≤ z1k+1}, ∂2J1

k+1 = 0 for Y 1 + K1 ≤ Y 2 ≤ z2k, and for

Ỹ ∈ BK1 , we have J1
k+1(Ỹ ) = J11

k+1(Y
1)+J12

k+1(Y
2);1 and outside the band (xiii) for Y 2 ≥ Y 1+K1,

r1k+1(Y
2) = z1k+1 for Y 2 ∈ [z1k+1 +K1, z

1
k+1 +2K1] and r1k+1(Y

2) ≤ Y 2 − 2K1 for Y 2 > z1k+1 +2K1.
Some of these conditions correspond to the conditions in the statement of Lemma 2: inductional

statements (iv) and (vi) correspond to Lemma 2’s condition (a); statement (viii) corresponds to
condition (b); and inductional statement (xii) corresponds to condition (d). Conditions (v), (vii),
and (xii) warrant special comment. The firms’ cost functions are decreasing (weakly) in the other
firm’s inventory level since, when the retailer holds more inventory, she reduces the supplier’s cost
of the consumer backlog; when the supplier holds more inventory, he reduces the chance of the
retailer being starved of material. Both of these circumstances result in reduced costs for the other
firm. (xiii) means that firm 1’s best reply function rises vertically along the X2 dimension for a
height of K1 above the band B and for greater values of Y 2 it will never return to the band, thus
eliminating the possibility of additional equilibria at higher supplier stocking levels.

We start with the inductional step to clearly present the logic of the critical elements of the
proof. In order for the inductional step to hold, one of the elements is condition (iii) that the
“up-to” values, zjns, are decreasing in the number of remaining periods n. The initial steps for
n = 1, 2 will make it possible - we present them after the inductional step, since they use mostly
the same logic.
Induction step, Period n: Assume (i) -(xiii) above with index n − 1 replacing k. Note from (viii),

J2
n separates (J2

n(Ỹ ) = J21
n (Y 1) + J22

n (Y 2)) which immediately delivers a proper definition2 of
z2n = argminY 2 J22

n (Y 2), due to the convexity of J22
n .

1J11 and J12 do not have the same values in the band B and in BK1 .
2In Definition 3, z2n was defined as not dependent on Y 1.
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• Unconstrained response functions:

Each of the three boxes in Figure 2 illustrates the feasible set, A(X̃) =×2
j=1Aj(X̃). Note that

echelon 2’s controllable costs are minimized at z2n and that echelon 2 has no incentive to store
more than K1; that is, the supplier’s best response function remains in the band. Consequently,
from Lemma 2, the unconstrained best-reply function (defined as in Lemma 2, that is ignoring the
current period initial constraints while accounting for the discounted future expected costs) is

r2n = z2n|[Y 1, Y 1 +K1].

The retailer may be better off choosing actions outside of band B and consequently, her response
function may depart from it. If the response function is limited to the band,

r1n = z1n|[Y 2 −K1, Y
2].

From induction assumption (xiii), r1n = z1n for z1n + K1 ≤ Y 2 ≤ z1n + 2K1 and, from (xii), r1n
is within the band for Y 2 ≤ z1n + K1. Thus, from Lemma 2, r1n = min{z1n|[Y 2 − K1, Y

2], z1n} for
Y 2 ≤ z1n +K1. Also, note that z1n = y∗my from induction assumption (xi).
• Unconstrained equilibria:

We consider first the unconstrained response functions and unconstrained equilibrium, which
ignore the capacity constraints. The conditions of Theorem 1 (strategy spaces are nonempty com-
pact convex subsets of Euclidean space, payoff functions are continuous and quasi-convex in Y i)
are satisfied for a given starting inventory position, X̃ ∈ B; there exists at least one pure strategy
equilibrium. As illustrated in Figure 1(C), a unique equilibrium exists, if y∗my = z1n ≤ z2n ≤ z1n+K,
for n ≥ 2. Otherwise, the unconstrained response functions overlap over a range [Y 1, Y 1 +K1] for
y∗my ≤ Y 1 ≤ min(z1n, z

2
n −K1), resulting in multiple equilibria. Recall that Pareto refinement dis-

cards all equilibria with higher costs for both players. Here, the use of Pareto refinement results in
a single undominated equilibrium: Clearly conditions (v) and (vii) apply for the multiple-equilibria
interval and, thus, J i

n is non-increasing in Y −i (Y −i refers to the player who is not i), implying
that there exists an equilibrium with lower costs for each of the players, which is (Y 1, Y 1 + K1),
where Y 1 = min(z1n, z

2
n −K1).

• Constrained equilibria:
Given the unconstrained equilibria, the properties (monotonicities) of individual value functions,

J i
n, and of response functions, we now describe the constrained equilibria (actual equilibria given

the initial state). We use the three possible cases, shown in Figure 1, in which these best-reply func-
tions can interact: (A) z1n ≤ z2n−K1, (B) z

1
n < z2n−K1 ≤ z1n, and (C) z2n−K1 ≤ z1n ≤ z2n ≤ z1n+K1.

In the case when z2n < z1n, the dynamics are very similar to the extreme case of z2n = z1n within
case (C). Since the logic is the same, we do not explicitly consider this case here. The restric-
tions on Y 1 in induction statement (vii) are intended to guarantee that all the properties are
valid for Y 1 ≤ min(z2n −K1, z

1
n), relating to Figure 1(A)(B). However, in case (C), z1n defines the

equilibrium. Therefore, all properties are proved in the area up to the equilibrium. Considering
case (A) first, we find the equilibrium: (z1n|[X1, X2], z1n|[X1, X2] + K1). Likewise for case (B):
((z2n −K1)|[X1, X2], (z2n −K1)|[X1, X2] +K1). For case (C): (z1n|[X1, X2], z2n|[X2, X2 +K1]). We
now show (i), (ii), (iv), (v), (vi), (vii):

The Pareto dominating equilibrium is clearly a modified echelon base-stock policy, Y 1
n = min(z1n, z

2
n−

K1)|[X1
n, X

2
n] for cases (A) and (B), Y 1

n = z1n|[X1
n, X

2
n] for case (C), and Y 2

n = z2n|[X2
n, Y

1
n + K1],

demonstrating (i). Due to assumed convexities and separabilities, now we show that V i
n is separable,

J i
n+1 is convex in Y i, and J1

n+1 is convex in Y 2 ≤ z2n and J2
n+1 is convex for Y 1 ≤ min(z2n−K1, z

1
n):

Consider case (A). Since J1
n is convex in Y 1 and convex decreasing in Y 2 ≤ z2n, the function

J1
n(Y

1, Y 1 +K1) is convex for Y 1 ≤ z2n −K1, minimized at Y 1 = z1n, where z1n ≤ z2n −K1. Point
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(ii) for case (A) follows, as the equilibrium value function depends only on Y 1, for X2 ≤ z2n −K1.
Due to the feasibility constraints, Y 1 = X2 below the equilibrium up-to levels. In order to show
properties of J i

n+1, it is sufficient to show them for functions V i
n: Li is convex and separable (not

influencing J3−i
n+1) and the demand operator shifts βE[V i

n(Ỹ − D̃)] downwards, so adding these two
components results in all desired properties for J i

n+1. V
1
n is flat (constant valued) in X1 ≤ z1n and

convex increasing in z1n ≤ X1 due to the following.
Note that ∂1V

1
n (X̃) = DJ11

n (Y 1)|Y 1=X1 + DJ12
n (Y 2)|Y 2=X1+K1

for z1n ≤ X1 ≤ z2n − K1 and
∂1V

1
n (X̃) = DJ11

n (Y 1)|Y 1=X1 for z2n − K1 ≤ X1. Since DJ12
n (Y 2)|Y 2=X1+K1

≤ 0 for z1n ≤ X1 ≤
z2n − K1 and both terms are non-decreasing, convexity follows thus implying (iv). V 1

n is convex
decreasing in X2 ≤ z1n and flat in z1n ≤ X2 ≤ z2n, and V 1

n is decreasing in X2 ≥ z2n from inductional
assumption (v) for k = n − 1, implying (v) for k = n. V 2

n is convex decreasing in X2 ≤ z1n and
flat in z1n ≤ X2 ≤ z2n, and convex increasing in X2 ≥ z2n. V 2

n is flat in X1 ≤ z1n, decreasing in
z1n ≤ X1, implying (vi) and (vii). The logic is similar for case (B). V 1

n is flat in X1 ≤ z2n − K1

and convex increasing in X1 ≥ z2n −K1 (implying (iv)). V 1
n is convex decreasing in X2 ≤ z2n −K1,

flat in z2n − K1 ≤ X2 ≤ z2n, and decreasing in X2 ≥ z2n (implying (v)). V 2
n is convex decreasing

in X2 ≤ z2n −K1, flat in z2n −K1 ≤ X2 ≤ z2n, and convex increasing in X2 ≥ z2n (justifying (vi)).
V 2
n is flat in X1 ≤ z2n −K1 and decreasing in X1 ≥ z2n −K1 ((vii)). Similarly, for case (C) V 1

n is
flat for X1 ≤ z1n, convex increasing for X1 > z1n ((iv)), convex decreasing for X2 ≤ z2n −K1, and
decreasing in X2 > z2n − K1 ((v)). Also, V 2

n is flat for X1 ≤ z1n, decreasing for X1 > z1n, convex
decreasing for X2 ≤ z2n −K1 ((vii)), and convex increasing in X2 > z2n−K1 ((vi)). Note that J i

n is
separable from induction assumption (ii) and the separability of Li. The separability of V i

n follows
due to the fact that the equilibrium in period n depends upon X1 or X2 but not a combination of
both within a single parameter. This shows (ii).
• Ordering of derivatives and up-to levels:
Let us define the following parameterized reference inequalities, which will permit analysis of the
various subcases, using the indices (i, j), where i ∈ {1, 2} denotes firm i and the derivative variable
is Xj , j ∈ {1, 2}. These reference inequalities will be shown later for specific ranges of X̃.

∂jV
i
n(X̃) = 0 = ∂jV

i
n−1(X̃) (Eq1)

∂jV
i
n(X̃) = DJ i1

n (Y 1)|Y 1=Xj +DJ i2
n (Y 2)|Y 2=Xj+K1

≥ 0 = ∂jV
i
n−1(X̃) (Eq2)

∂jV
i
n(X̃) = DJ i1

n (Y 1)|Y 1=Xj +DJ i2
n (Y 2)|Y 2=Xj+K1

≥ DJ i1
n−1(Y

1)|Y 1=Xj +DJ i2
n−1(Y

2)|Y 2=Xj+K1
= ∂jV

i
n−1(X̃) (Eq3)

∂jV
i
n(X̃) = DJ i1

n (Y 1)|Y 1=Xj ≥ DJ i1
n−1(Y

1)|Y 1=Xj

≥ DJ i1
n−1(Y

1)|Y 1=Xj +DJ i2
n−1(Y

2)|Y 2=Xj+K1
= ∂jV

i
n−1(X̃) (Eq4)

∂jV
i
n(X̃) = DJ i1

n (Y 1)|Y 1=Xj ≥ DJ i1
n−1(Y

1)|Y 1=Xj = ∂jV
i
n−1(X̃) (Eq5)

∂jV
i
n(X̃) = 0 ≥ ∂jV

i
n−1(X̃) (Eq6)

∂jV
i
n(X̃) = DJ i1

n (Y 1)|Y 1=Xj ≥ 0 = ∂jV
i
n−1(X̃) (Eq7)

While the comparisons are fairly simple, the complicating factor is that different constraints (and
corresponding different formula) describe equilibria in various regions. Figure 6 shows why various
comparisons are needed and also gives intuition why they hold. It illustrates the dominance of
derivatives for adjacent periods, but also shows why the ordering of base-stock levels is crucial.
Consider case (A) and its two subcases: (I) z1n−1 < z2n −K1 and (II) z2n −K1 ≤ z1n−1. Given the
needed ordering of thresholds, all of the comparisons are straightforward. For example in Figure 6,
derivatives are 0 below min(z1n−1, z

1
n), in period n the derivative is positive between z1n and z1n−1,

while still 0 in period n − 1. The ordering between min(z1n−1, z
1
n) and the next threshold follows

3



z1n−1 z2n−1 −K1

∂1V
1
n−1 = 0 DJ11

n−1(Y
1)|Y 1=X1 +DJ12

n−1(Y
2)|Y 2=X1+K1

DJ11
n−1(Y

1)|Y 1=X1

∂1V
1
n = 0 DJ11

n (Y 1)|Y 1=X1 +DJ12
n (Y 2)|Y 2=X1+K1

DJ11
n (Y 1)|Y 1=X1

z1n z2n −K1

Figure 6: Derivative dominance in periods n and n+ 1: Case (A)

from the inductional step, etc. Formally, we can relate each case and subcase to the reference
inequalities (Eq1)-(Eq7) above:

(i, j) = (1, 1): For subcase (I), X1 ≤ z1n → (Eq1), z1n ≤ X1 ≤ min(z1n−1, z
2
n − K1) → (Eq2); for

subcase (II), z2n −K1 ≤ X1 ≤ z2n−1 −K1 → (Eq7)

(i, j) = (2, 1): For subcases (I) and (II), same as for (i, j) = (1, 1) for X1 ≤ z2n −K1

(i, j) = (1, 2): For subcase (I), X2 ≤ z1n → (Eq3), z1n ≤ X2 ≤ z1n−1 → (Eq6), z1n−1 ≤ X2 ≤ z2n →
(Eq1), z2n ≤ X2 ≤ z2n−1 → (Eq7), z2n−1 ≤ X2 → (Eq5); for subcase (II), z1n ≤ X2 ≤
min(z1n−1, z

2
n−1 −K1, z

2
n) → (Eq6)

(i, j) = (2, 2): same as for (i, j) = (1, 2)

Now, consider case (B) and its two subcases: (I) z2n−1 −K1 ≤ z1n−1 and (II) z1n−1 < z2n−1 −K1. In
both these subcases we assume (I) z2n−1 −K1 ≤ z1n−1 ≤ z2n and (II) z1n−1 ≤ z2n−1 −K1 ≤ z2n. If this
is not the case, the analysis reduces to fewer, simpler cases.

(i, j) = (1, 1): For subcase (I), X1 ≤ z2n − K1 → (Eq1), z2n − K1 ≤ X1 ≤ z2n−1 − K1 → (Eq7),
z2n−1 − K1 ≤ X1 → (Eq5); for subcase (II), z2n − K1 ≤ X1 ≤ z1n−1 → (Eq7), z1n−1 ≤ X1 ≤
z2n−1 −K1 → (Eq4)

(i, j) = (2, 1): For subcases (I) and (II), X1 ≤ z2n −K1 → (Eq1)

(i, j) = (1, 2): For subcase (I), X2 ≤ z2n − K1 → (Eq3), z2n − K1 ≤ X2 ≤ z2n−1 − K1 → (Eq6),
z2n−1 − K1 ≤ X2 ≤ z2n → (Eq1); for subcase (II), z2n − K1 ≤ X1 ≤ z1n−1 → (Eq6), z1n−1 ≤
X1 ≤ z2n → (Eq1)

(i, j) = (2, 2): same as for (i, j) = (1, 2), z2n ≤ X2 ≤ z2n−1 → (Eq7), z2n−1 ≤ X2 → (Eq5)

Case (C) has similar logic. Across cases (A), (B), and (C), the following is true ∂jV
i
n(X̃) ≥

∂jV
i
n−1(X̃) for i, j = 1, 2, and limited for (i, j) = (1, 2), X2 ≤ z2n, and (i, j) = (2, 1), X1 ≤

min(z2n −K1, z
1
n). Since we are dealing with the territory below the base-stock levels, these domi-

nance conditions also hold for E[V (Ỹ − D̃)]. Multiplying both sides by β and adding Li to both
sides also maintains these conditions, resulting in ∂jJ

i
n+1(Ỹ ) ≥ ∂jJ

i
n(Ỹ ) for i, j = 1, 2, and limited

for (i, j) = (1, 2), Y 2 ≤ z2n, and (i, j) = (2, 1), Y 1 ≤ min(z2n−K1, z
1
n). Given the convexity shown for

the necessary territory, this is sufficient for (x), which in turn yields (iii). Notice that firm 1’s peri-
odic cost (which has a minimum at y∗my) is added to the discounted expected cost-to-go, V 1

n , that is
constant in X1 for X1 ≤ z1n, since the equilibrium is dependent only upon X2 (and the equilibrium
up-to levels for future periods is higher. Formally, ∂1V

1
n = 0 for X1 ≤ min(z1n, z

2
n − K1) in cases

(A) and (B) and for X1 ≤ z1n for case (C). This is preserved under the operation βE[V 1
n (Ỹ − D̃)]

and thus z1n+1 = y∗my = argminY 1 [L1(Ỹ ) + βE[V 1
n (Ỹ − D̃)]] yielding (xi).
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• Independence of the best response outside the band:
We now consider the state space above the band, Y 2 ≥ Y 1 + K1. From (xii), J1

n is convex in
Y 1, decreasing in Y 1 ≤ z1n for Y 2 ≤ z1n + 2K1, independent of Y 2 for Y 2 ≤ z2n−1, separable for
Y 1 +K1 ≤ Y 2 ≤ Y 1 + 2K1, and J1

n(Y
1, Y 1 +K1) is decreasing for Y 1 ≤ z1n. Thus, the response

function r1n is within the band (for Y 2 ≤ z1n +K1 it properly describes the best response function
when the supplier is not limited to the band). From (xiii), for z1n + K1 ≤ X2 ≤ z1n + 2K1), the
retailer’s best response is independent of Y 2, r1n(Y

2) = z1n (i.e., it will rise “vertically” in the slice
BK1 above the band), and consequently Dr1n(Y

2) = 0 for z1n +K1 ≤ Y2 ≤ z1n + 2K1).
Now consider X̃ ∈ BK1 . For notational efficiency, let z = min(z1n − K1, z

2
n − 2K1). For X1 ≤ z,

V 1
n (X̃) = J1

n(X
1 +K1, X

1 + 2K1), adopting the decreasing convexity from the upper edge of the
band, Bn; for z ≤ X1 ≤ z+K1 and X2 ≤ z+2K1, V

1
n (X̃) = J1

n(z+K1, z+2K1); for z+2K1 ≤ X2 ≤
z1n+K1, V

1
n (X̃) = J1

n(X
2−K1, X

2)3; for z1n−K1 ≤ X1 ≤ z1n and z1n+K1 ≤ X2 ≤ z1n+2K1, V
1
n (X̃) =

J1
n(z

1
n, X

2); for X1 ≥ z1n, V
1
n (X̃) = J1

n(X
1, X2). The important element is that the solution follows

the upper edge of the band up to min(z1n, z
2
n−K1) resulting in the retailer’s decreasing convexity in

X1 and a zero slope for both the retailer and supplier with respect toX2 within BK1 forX2 ≤ z+K1.
Thus, from the assumed convexity of J1

n in Y 1, the separability of J1
n, and ∂2J

1
k+1 = 0, we have

V 1
n is convex decreasing in X1 ≤ z, independent of X1 for z ≤ X1 ≤ z1n, increasing convex for

X1 ≥ z1n, and constant in X2 for X2 ≤ z2n. Thus, V
1
n (X̃) = V 11

n (X1)+V 12
n (X2). These separability

and convexity in X1 properties are preserved for the operation βE[Vn(Ỹ − D̃)]. Adding L1(Ỹ ) will
then yield J1

n+1(Ỹ ) which inherits the convexity and separability properties. As the minimizer of

J1
n+1(Ỹ ) is z1n+1, independent of Y 2 for z1n+1 + K ≤ Y 2 ≤ z1n+1 + 2K1, the first claim in (xiii)

follows. Consequently convexity and monotonicity of J1
n+1(Ỹ ) for Y1 ≤ z1n+1 follows. As, V 2

n has
zero slope in X2 for X2 ≤ z +K1 and positive slope in X2 for X2 > z +K1, properties conveyed
to J2

n+1. Thus, all properties are inherited yielding (xii) for X̃ ∈ BK1 .

For X2 ≥ X1 + 2K1, from convexity of J1
n in Y 1 and the definition of r1n, we have V 1

n (X̃) =
J1
n(X

1 +K1, X
2). Consequently, V 1

n is convex decreasing in X1 ≤ z1n and independent of X2 ≤ z2n
and convexity in X1 properties are preserved for the operation βE[Vn(Ỹ − D̃)] and adding L1.
Since convexity holds at Y 2 = Y 1 + 2K1, it holds across all Y 1. Also, the increasing convexity of
J1
n+1 for Y 1 ≥ z1n+1 implies r1n+1(Y

2) ≤ Y 2 − 2K1 for Y 2 > z1n+1 + 2K1, which completes (xiii).
Consequently, the retailer’s best response will not return to the band B for Y 2 > z1n+1 + 2K1.

Induction Basis: The salvage value function for player 1 is applied in period 0, while the salvage
value function for player 2 is applied in period 1. Mirroring the claims in Lemma A1, for any
ϵ ∈ (0, (h1 + h2)/4), let τ0 be such that L′(τ0) > h1 + h2 − ϵ, and τ1 such that for all τ ≥ τ1,
we have L′(τ) −

∫∞
K1

L′(τ + K1 − D)f(D)dD < ϵ. We set (a) γ1 = max(y∗my, τ0, τ1) + E[D] and

λ1 = (h1 + h2)/(4βE[D]), (b) γ2 = z11 , and (c) λ2 ≥ βp2 Pr(D+D>K1)
1−β . This will guarantee the

ordering of derivatives below.

Period 1: We now allow k to assume values of 0 and 1, corresponding to periods 1 and 2. In Period
1 we have:

J1
1 (Ỹ ) = E[(h1 + h2)(Y

1 −D)+ + p1(D − Y 1)+] + βλ1E[(Y
1 −D − γ1)

2]

J2
1 (Ỹ ) = h2(Y

2 − Y 1) + p2E[(D − Y 1)+]

Clearly, J1
1 (Ỹ ) = J11

1 (Y 1)+J12
1 (Y 2), so J12

1 (Y 2) = 0, and J2
1 (Ỹ ) = J21

1 (Y 1)+J22
1 (Y 2), so J21

1 (Y 1) =
−h2Y

1+p2E[(D−Y 1)+] and J22
1 (Y 2) = h2Y

2. Since J i
1 are continuous in Ỹ , convex in Y i, and the

action set, A(X̃), is nonempty compact convex subset of a Euclidean space (as in the inductional

3This case exists only when z2n −K1 ≤ z1n. Moreover, this is the distorting case where the slope of the retailer’s
best response for X2 ≥ X1 + 2K1 may be increased from zero over multiple periods.
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step), from Theorem 1 there exists at least one pure-strategy Nash equilibrium, which occurs at
the intersection of best-reply functions. Due to the strict convexity of J1

1 with respect to Y 1 and
the strict monotonicity of J2

1 , the equilibrium is unique in period 1.
Denote z11 := argminY 1 J1

1 (Ỹ ) and z21 := argminY 2 J2
1 (Ỹ ) = −∞. The equilibrium is:

Y 1 = z1|[X1, X2] and Y 2 = X2

yielding (i) for n = 1. Based on Karush’s (1959) lemma V i
1 (X̃) = V i1

1 (X1) + V i2
1 (X2) since J i

1 is
separable for i = 1, 2, establishing (ii). For (iv)-(vii), it is sufficient to show the desired properties
for V i

1 . Note that Lemma 1 permits us to restrict attention to X̃ ∈ B only. From the definitions
of J i

1 (see above), the period 1 equilibrium, and the separability, we have that V 1
1 and V 2

1 are
flat in X1 ≤ z11 and convex increasing and convex decreasing, respectively, in X1 ≥ z11 yielding
(iv) and (v). V 1

1 (X̃) = J1
1 (X

2, X2) = J11
1 (X2) is convex decreasing in X2 for X2 ≤ z11 since J11

1

is convex and minimized at z11 . V 2
1 (X̃) = J2

1 (X
2, X2) = p2E[(D − X2)+] is convex decreasing

in X2 for X2 ≤ z11 . V i
1 (X̃) = J i

1(z
1
1 |[X1, X2], X2) = J i1

1 (max(z11 , X
1)) + J i2

1 (X2) for X2 ≥ z11 .
Thus, V 1

1 (X̃) = J11
1 (max(z11 , X

1)) so ∂2V
1
1 = 0 and V 2

1 (X̃) = J21
1 (max(z11 , X

1)) + J22
1 (X2) =

J21
1 (max(z11 , X

1)) + h2X
2 so ∂2V

2
1 = h2 > 0 for X2 ≥ z11 . This means that, V i

1 is convex in Xi and
non-increasing in X−i yielding (v) and (vi). While in any period n ≥ 2, the analysis within band
B and outside this band will differ, for period 1 the slope (derivative) of V 1

1 with respect to X1 is
constant in X2. Thus, the derived best reply function in period 2, r12, will be completely vertical
along the Y 2 dimension, thus justifying (xiii). Likewise, (xii) is justified since J1

1 is convex in Y 1

around z11 and J2
1 is increasing in Y 2.

Period 2: From the definition of the salvage value functions above, ∂1S
2
1(X̃) = 0 and

∂2S
2
1(X̃) =

{
−λ2 X2 ≤ γ2
0 γ2 ≤ X2

so S2
1 is convex non-increasing in X2 and independent of X1. Thus, S2

1 + V 2
1 is convex in X2 and

non-increasing in X1. Consequently, βE[S2
1(Ỹ − D̃)] + βE[V 2

1 (Ỹ − D̃)] + L2(Ỹ ) =: J2
2 (Ỹ ) has the

same properties, yielding (vi) and (vii). Condition (3) in the main paper ensures a finite minimizer
with respect to Y 2. Likewise, V 1

1 (Ỹ ) is convex in Y 1 and convex non-increasing in Y 2, implying that
J1
2 (Ỹ ) := L1(Ỹ )+βE[V 1

1 (Ỹ − D̃)] has these same properties, yielding (iv) and (v). This establishes
the basis convexity conditions. Specifically, ∂1V

1
1 = 0 for Y 1 ≤ z11 and convex non-decreasing for

Y 1 > z11 , which remains true for βE[V 1
1 (Ỹ − D̃)]. Thus, z12 = argminY 1 J1

2 = y∗my, establishing
(xii). J i

2 is clearly separable since Li is separable.
Condition (a) is sufficient to establish that z12 ≤ z11 , partly showing (iii), since the upper edge

of the band for Y 1 ≤ z11 mimicks the single dimensional state in the single echelon capacitated
problem described in Lemma A1, under identical salvage value conditions. This will then establish
the slope of J1

2 (Y
1, Y 1 +K1) at (z11 , z

1
1 +K1) will be non-negative, sufficient to establish (ix) for

the retailer, and combined with the convexity results, sufficient to show (x) for the retailer. It
is straightforward to see the equilibrium solution is Y 1

2 = max(z12,min(z12 , z
2
2 −K1))|[X1, X2] and

Y 2
2 = z22 |[X2, Y 1

2 +K1].
To establish the basis for z2n+1 ≤ z2n, however, we need to consider an additional period since

z21 = −∞. Clearly, there exists the freedom to choose values of γ1 and γ2 to achieve z22 ≤ z11 , which
we do (partially establishing (iii)).

We consider the same three cases: (A) z12 ≤ z22 − K1, (B) z12 < z22 − K1 ≤ z12 , and (C)
z22 −K1 ≤ z12 ≤ z22 . Consider first (A). Using the derived equilibrium solution (Y 1, Y 2) above, we
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have
∂2V

2
2 (X̃) = ∂1J

2
2 (Ỹ )|Y 1=X2 + ∂2J

2
2 (Ỹ )|Y 2=X2+K1

. (Eq8)

For X2 ≤ z11 , ∂2V
2
1 (X̃) = D[p2E[(D −X2)+]] < 0; for X2 ≥ z11 , ∂2V

2
1 (X̃) = h2 > 0. Thus, V 2

1 has
a finite minimizer in X2 and V 2

1 (X̃) + S2
1(X̃) has a finite minimizing point with respect to X2 due

to the functional shape of S2
1 . So J2

2 is convex in Y 2 around z22 ≤ z11 ,

J2
2 (Ỹ ) = L2(Ỹ ) + βE[V 2

1 (Ỹ − D̃)] + βE[S2
1(Ỹ − D̃)]

= h2(Y
2 − Y 1) + p2E[(D − Y 1)+] + βp2E[(D +D − Y 2)+] + βλ2E[(D + γ2 − Y 2)+].

Thus, ∂1J
2
2 = ∂1J

2
1 , partly showing (x). For X2 ≤ z12 , ∂2V

2
2 (X̃) = D[p2E[(D − Y 1)+]]|Y 1=X2 +

∂2βE[V
2
1 (Ỹ − D̃)]|Y 2=X2+K1

+ ∂2βE[S
2
1(Ỹ − D̃)]|Y 2=X2+K1

= −p2 Pr(D > X2) − βp2 Pr(D >
X2 + K1 − D) − βλ2, and for X2 ≤ γ2, ∂2[V

2
1 (X̃) + S2

1(X̃)] = Dp2E[(D − Y 1)+]|Y 1=X2 − λ2 =
−p2 Pr(D > X2)− λ2.
Since z12 ≤ z11 = γ2, from condition (b) and the expression for X2 ≤ z12 ,

∂2V
2
2 (X̃) = −p2 Pr(D > X2)− βp2 Pr(D > X2 +K1 −D)− βλ2

≥ −p2 Pr(D > X2)− λ2 = ∂2[V
2
1 (X̃) + S2

1(X̃)

since we assume condition (c) of the theorem statement holds. To see condition (c) is sufficient,

λ2 ≥
βp2 Pr(D +D > K1)

1− β
≥ βp2 Pr(D +D > X2 +K1)

1− β
.

In case (B), in period 2, for X2 ≤ z22 −K1, ∂2V
2
2 (X̃) = Dp2E[(D − Y 1)+]|Y 1=X2 + ∂2βE[V

2
1 (Ỹ −

D̃)]|Y 2=X2+K1
+∂2βE[S

2
1(Ỹ −D̃)]|Y 2=X2+K1

. In case (C), forX2 ≤ z22−K1, ∂2V
2
2 (X̃) = −p2 Pr(D >

X2) − βp2 Pr(D + D > X2 + K1) − βλ2 ≥ −p2 Pr(D > X2) − λ2 = ∂2[V
2
1 (X̃) + S2

1(X̃)] and for
z22 −K1 ≤ X2 ≤ z22 , ∂2V

2
2 (X̃) = 0 ≥ −p2 Pr(D > X2)− λ2 = ∂2[V

2
1 (X̃) + S2

1(X̃)].
For (A), (B), and (C), for X2 ≤ max(z12,min(z12 , z

2
2 −K1))

∂2V
2
2 (X̃) ≥ ∂2[V

2
1 (X̃) + S2

1(X̃)]

∂2E[V
2
2 (Ỹ − D̃)] ≥ ∂2E[V

2
1 (Ỹ − D̃)] + ∂2E[S

2
1(Ỹ − D̃)]

∂2[L
2(Ỹ ) + βE[V 2

2 (Ỹ − D̃)]] ≥ ∂2[L
2(Ỹ ) + βE[V 2

1 (Ỹ − D̃)] + βE[S2
1(Ỹ − D̃)]]

∂2J
2
3 (Ỹ ) ≥ ∂2J

2
2 (Ỹ ) for Y 2 ≤ z12 .

For min(z12 , z
2
2 −K1) ≤ X2 ≤ z22 ,

∂2V
2
2 (X̃) = 0 ≥ ∂2V

2
1 (X̃) + ∂2S

2
1(X̃)

and following the same steps, we achieve

∂2J
2
3 (Ỹ ) ≥ ∂2J

2
2 (Ỹ )

showing the final part of (x), implying z23 ≤ z22 , yielding (iii), due to the convexity already shown.
The analysis deriving the properties for firm 1’s best reply function outside the band is very similar
to that in the induction step, but slightly simpler since r12(Y

2) is completely straight for values of
Y 2 ≥ Y 1 +K1, above the band B. This completes the basis.

7



Theorem 3 If p2 ≤ h2(1 − β)/β, for each starting inventory X̃ ∈ B, S1
0(X̃) = 0 and S2

1(X̃) = 0,
there exists a unique pure-strategy Nash equilibrium where the retailer orders up to a myopic base-
stock level, y∗my, if possible, and the supplier orders no goods at all. Also, V i

n(X̃) = V i1
n (X1) +

V i2
n (X2) for i = 1, 2, and n > 0.

Proof In period 1, J i
1(Ỹ ) = J i1

1 (Y 1) + J i2
1 (Y 2), ∂j∂jJ

i
1 ≥ 0 for i, j = 1, 2, y∗my = argminY 1 J1

1 ,
∂2J

1
1 = 0, ∂1J

2
1 = −h2 − p2 Pr(D > Y 1) < 0, and ∂2J

2
1 = h2 > 0. The constrained best-reply

functions are r11(Y
2) = y∗my|[X1, X2] and r21(Y

1) = X2, creating a unique equilibrium. Thus,

V i
1 (X̃) = J i

1(y
∗
my|[X1, X2], X2).

Assume: J i
n−1(Ỹ ) = J i1

n−1(Y
1) + J i2

n−1(Y
2) for i = 1, 2, ∂j∂jJ

i
n−1 ≥ 0 for i = j and i = 1, j = 2,

y∗my = argminY 1 J1
n−1, ∂2J

1
n−1 ≤ 0, ∂1J

2
n−1 ≤ 0, ∂1∂1J

2
n−1 ≥ 0 for Y 1 ≤ y∗my, ∂2J

2
n−1 ≥

h2−p2
∑n−2

i=1 βi. The constrained best-reply functions are r1n−1(Y
2) = y∗my|[X1, X2] and r2n−1(Y

1) =

X2, creating a unique equilibrium. Thus, V i
n−1(X̃) = J i

n−1(y
∗
my|[X1, X2], X2) and is separa-

ble since J i
n−1 is separable. It is clear ∂1V

i
n−1 = 0 for X1 ≤ y∗my for i = 1, 2, ∂1V

1
n−1 ≥ 0,

∂1∂1V
1
n−1 ≥ 0, ∂2V

1
n−1 ≤ 0, ∂2∂2V

1
n−1 ≥ 0, ∂1V

2
n−1 ≤ 0 for Y 1 > y∗my, ∂2V

2
n−1 ≥ −p2 Pr(D >

Y 2) − p2
∑n−2

i=1 βi ≥ −p2 − p2
∑n−2

i=1 βi = −p2
∑n−2

i=0 βi, ∂2∂2V
2
n−1 ≥ 0. These relationships will

be preserved for E[Vn−1(Ỹ − D̃)] and specifically ∂2E[V
2
n−1] ≥ −p2

∑n−2
i=0 βi. Multiplying by β

and adding the periodic cost generates J i
n which have all the requisite properties and specifically,

∂2J
2
n = h2 + β∂2E[V

2
n−1] ≥ h2 − p2

∑n−1
i=1 βi ≥ h2 − βp2

1−β ≥ 0 from the condition in the theorem.

Theorem 4 The equilibrium up-to levels are non-increasing when K1, h1, or h2 increase or when
p1 or p2 decrease.

Proof We partition the analysis between that for the economic parameters (h1, h2, p1, and p2)
and the capacity (K1), primarily in the basis for the induction. Firstly, consider the economic
parameters and the two conditions: (a) p2 > h2(1−β)/β and (b) p2 ≤ h2(1−β)/β. Let us consider
changes in the cost parameters, one at a time, but which do not change the status of condition of
(a) or (b) for a particular instance of the model (we examine the situation where this is not the
case later). Let us consider models satisfying condition (b) first. If condition (b) is maintained for
the values described, then the results of Theorem 3 are true. Theorem 3 shows that player 2 orders
nothing (z2n = −∞) and player 1 orders up to y∗my, if possible. Since y∗my := argminY 1 L1(Ỹ ),
increasing h1 or h2 or decreasing p1 results in a non-increase in y∗my, while p2 has no affect upon
y∗my. We will make use of the convexity and separability results of Theorem 2 and the best-response
construction results of Lemma 2.
Basis for Induction

Let us now consider models satisfying condition (a). Consider the economic parameters (h1, h2, p1, p2)
first. (Salvage value functions are the same for the different values of these parameters.) We con-
sider the case for h1 in depth and describe briefly how the other three cases differ slightly:

J1
1 (Ỹ ) = E[(h1 + h2)(Y

1 −D)+ + p1(D − Y 1)+] + βλ1E[(Y
1 −D − γ1)

2]

J2
1 (Ỹ ) = h2(Y

2 − Y 1) + p2E[(D − Y 1)+].

It is clear that ∂[∂1J
1
1 (Ỹ )]/∂h1 = Pr(D ≤ Y 1) ≥ 0 for all Y 1. In addition, ∂[∂2J

2
1 (Ỹ )]/∂h1 =

0, ∂[∂2J
1
1 (Ỹ )]/∂h1 = 0, and ∂[∂1J

2
1 (Ỹ )]/∂h1 = 0. Since J1

1 (Ỹ ) is independent of Y 2, z11 =
argminY 1 J1

1 (Ỹ ), ∂[∂1J
1
1 (Ỹ )]/∂h1 ≥ 0 and the convexity of J1

1 results in ∂z11/∂h1 ≤ 0.
Now consider the basis for the capacity. Clearly, ∂[∂1J

1
1 (Ỹ )]/∂K1 = ∂[∂2J

2B
1 (Ỹ )]/∂K1 =

∂[∂2J
1B
1 (Ỹ )]/∂K1 = ∂[∂1J

2B
1 (Ỹ )]/∂K1 = 0, implying ∂z11/∂K1 = 0.
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Induction Step

Now for period n, ∂[∂1J
1
n(Ỹ )]/∂h1 ≥ 0, ∂[∂2J

1
n(Ỹ )]/∂h1 ≥ 0 for all Y 2 ≤ z2n, ∂[∂2J

2
n(Ỹ )]/∂h1 ≥

0, and ∂[∂1J
2
n(Ỹ )]/∂h1 ≥ 0 for all Y 1 ≤ min(z2n −K1, z

1
n). (The analysis will be performed for h1

but is very similar for the other economic parameters and capacity.)
From the convexity and separability of J2

n, and ∂[∂2J
2
n(Ỹ )]/∂h1 ≥ 0 immediately implies

∂z2n/∂h1 ≤ 0 and ∂r2n/∂h1 ≤ 0, which has the structure described in Lemma 2. Likewise, from
the convexity and separability of J1

n, ∂[∂1J
1
n(Ỹ )]/∂h1 ≥ 0, ∂[∂2J

1
n(Ỹ )]/∂h1 ≥ 0, then ∂z1n/∂h1 ≤ 0,

∂z1n/∂h1 ≤ 0, and ∂r1n/∂h1 ≤ 0. The analysis with respect to K1 is similar but since the def-
inition of z1n depends on K1 (i.e., z1n = argminY 1 J1

n(Y
1, Y 1 + K1)), we must account for this

slight departure from the analysis with respect to h1. Now, ∂[DJ1
n(Y

1, Y 1+K1)](Y 1,Y 1+K1)/∂K1 =

∂[∂1J
1
n(Ỹ )]/∂K1+∂[∂2J

1
n(Ỹ )|Y 2=Y 1+K1

]/∂K1 = ∂[∂1J
1
n(Ỹ )]/∂K1+∂[∂2J

1
n(Ỹ )]/∂K1∂(Y

1+K1)/∂K1 ≥
0. Thus, ∂z1n/∂K1 ≤ 0. From Theorem 2, the convexity of J i

n is mapped to V i
n via the equilibrium

solution: ∂[∂1V
1
n (Ỹ )]/∂h1 ≥ 0, ∂[∂2V

1
n (Ỹ )]/∂h1 ≥ 0 for all Y 2 ≤ z2n, ∂[∂2V

2
n (Ỹ )]/∂h1 ≥ 0, and

∂[∂1V
2
n (Ỹ )]/∂h1 ≥ 0 for all Y 1 ≤ min(z2n −K1, z

1
n). For example, a typical solution in period n for

X2 ≤ min(z1n, z
2
n−K1), V

i
n(X̃) = J i

n(X
2, X2+K1) and due to separability and the induction assump-

tion, ∂[∂2V
i
n(X̃)]/∂h1 = 0 and ∂2V

i
n(X̃) = DJ i1

n (Y )|Y=X2 +DJ i2
n (Y )|Y=X2+K1

≥ DJ i1
n (Y )|Y=X2 +

DJ i2
n (Y )|Y=X2 and so ∂[∂2V

i
n(X̃)]/∂h1 = ∂[DJ i1

n (X2)]/∂h1 + ∂[DJ i2
n (X2 + K1)]/∂h1 ≥ 0. Con-

sequently, ∂[∂jE[V
i
n(Ỹ − D̃)]]/∂h1 ≥ 0 over the corresponding domains. Since ∂[∂1L

1(Ỹ )]/∂h1,
∂[∂1J

1
n+1(Ỹ )]/∂h1 ≥ 0, ∂[∂2J

1
n+1(Ỹ )]/∂h1 ≥ 0 for all Y 2 ≤ z2n, ∂[∂2J

2
n+1(Ỹ )] ≥ 0, and ∂[∂1J

2
n+1(Ỹ )]/∂h1 ≥

0 for all Y 1 ≤ min(z2n −K1, z
1
n), completing the induction. This establishes that increasing h1 has

a non-increasing effect upon z1n and z2n under condition (a). For the cases of increasing h2 or K1 or
decreasing either p1 or p2, the steps of analysis are very similar to that of h1

What about a change in the cost parameters p2 and h2, whereby there is a move from condition
(a) to condition (b)? (The discussion will be identical for the converse case.) Theorem 3, where
condition (b) holds, establishes that z2n = −∞ and z1n = y∗my. Theorem 2, where condition (a)
holds, establishes some z1n which is greater than or equal to y∗my, and a finite value of z2n. Therefore,
a decrease of p2, such as (iv), causing a change from condition (a) to condition (b), results in
change from a (potentially) finite value of z2n to z2n = −∞ and a change from a value of z1n > y∗my

to z1n = y∗my. Since the definition of the holding costs is as echelon holding costs, an increase in h2
will result in a decrease in the myopic order-up-to level from the definition of the periodic costs of
player 1. Changes in h1 or p1 will not cause a switch from condition (a) to (b) or vice versa.
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