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Abstract
Prostate cancer is the second leading cause of death from cancer, behind lung cancer, for men in the U. S, with nearly 30,000
deaths per year. A key problem is the difficulty in distinguishing, after biopsy, between significant cancers that should be treated
immediately and clinically insignificant tumors that should be monitored by active surveillance. Prostate cancer has been over-
treated; a recent European randomized screening trial shows overtreatment rates of 40%. Overtreatment of insignificant tumors
reduces quality of life, while delayed treatment of significant cancers increases the incidence of metastatic disease and death. We
develop a decision analysis approach based on simulation and probability modeling. For a given prostate volume and number of
biopsy needles, our rule is to treat if total length of cancer in needle cores exceeds c, the cutoff value, with active surveillance
otherwise, provided pathology is favorable. We determine the optimal cutoff value, c*. There are two misclassification costs:
treating a minimal tumor and not treating a small or medium tumor (large tumors were never misclassified in our simulations).
Bayes’ Theorem is used to predict the probabilities of minimal, small, medium, and large cancers given the total length of cancer
found in biopsy cores. A 20 needle biopsy in conjunction with our new decision analysis approach significantly reduces the
expected loss associated with a patient in our target population about to undergo a biopsy. Longer needles reduce expected loss.
Increasing the number of biopsy cores from the current norm of 10–12 to about 20, in conjunction with our new decision model,
should substantially improve the ability to distinguish minimal from significant prostate cancer by minimizing the expected loss
from over-treating minimal tumors and delaying treatment of significant cancers.
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1 Introduction

Prostate cancer is the second leading cause of death from
cancer, behind lung cancer, for men in the United States, with
nearly 30,000 deaths per year (www.cancer.net/cancer-types/

prostate-cancer/statistics). Whether to screen men for prostate
cancer is controversial, provoking heated arguments on both
sides of the issue. Screening for the presence of prostate
cancer consists of a blood test to measure prostate specific
antigen (PSA), which is a marker for prostate cancer, and
typically a digital rectal examination in which the physician
looks for lumps or other prostate abnormalities. Under
screening, an elevated PSA, usually defined as more than
4 ng/mL or an abnormal digital exam, leads to a prostate
biopsy. In a biopsy, a number of needles, guided by
ultrasound, referred to as trans-rectal ultrasonography
(TRUS), are inserted into the prostate, with each needle
extracting a core of tissue later examined by a radiologist for
the presence of cancer. If cancer is detected, the patient is
either treated by surgery (prostatectomy) or radiation. or not
immediately treated but monitored over time by further PSA
blood tests, a process referred to as Bactive surveillance.^

Two major randomized trials, one in the U.S. [1], and the
other in Europe [2], addressed the benefits of screening and
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yielded conflicting results. In the European trial, screening
reduced the death rate from prostate cancer by an estimated
21% at a 13-year follow-up, while the U.S. study showed no
significant reduction in the death rate for those that were
screened. The argument in favor of screening is that doing
sowill mean detecting and treating significant prostate cancers
early and thereby saving lives. The argument against screen-
ing is that prostate cancer is a disease that has frequently been
over-diagnosed and over-treated [3, 4]. The European trial [2]
showed that about 40% of surgeries in the screened group
were unnecessary, meaning that the volume of cancer and its
pathology were such that not treating would have resulted in
minimal risk to the patient. The cost of misclassifying and
treating such tumors that are called minimal or indolent in-
cludes the monetary cost of the treatment (surgery or radia-
tion) plus its associated mortality and morbidity, as well as the
common treatment side effects of impotence and inconti-
nence. The European study also showed that screening result-
ed in a 40% reduction in metastatic disease at diagnosis for
patients in the screened group [5]. Metastatic disease means
the cancer has spread beyond the prostate and consequently
the patient typically must undergo repeated hormone therapy
with its associated negative side effects and faces diminished
life expectancy.

In 1992, the American Urological Association (AUA) and
the American Cancer Society (ACS) recommended annual
PSA screening for men 50 years of age and older [6, 7]. In
2008, the US Preventive Services Task Force (USPSTF) rec-
ommended that men 75 years of age and older not be screened
[8], and in a draft public statement in October 2011 followed
by a final document in May 2012, the organization recom-
mended against screening for all men, citing that the benefits
did not outweigh the negative effects [9]. Drazer et al. [10]
reported a reduction in screening rates after the USPSTF draft
and final recommendations. The authors estimated that
screening declined in the period from 2010 to 2013 from
33.3% to 24.8% for men aged 50–59, and from 51.2% to
46.3% for men aged 60–74. Jemal et al. [11] reported that
for men 50 years of age and older, prostate cancer incidence
per 100,000 men declined by 16% from 2011 to 2012, which
the authors attributed to a reduction in the incidence of screen-
ing. Weiner et al. [12] estimated that the number of men with
metastatic (advanced) prostate cancer increased by 72% from
2004 to 2013. While the authors concluded that this increase
may in part be the result of the USPSTF recommendations
against screening, they also recognized that the increase in
metastatic disease began before the release of these
recommendations.

A number of authors [13–15] have developed models that
aim to optimize the screening policy. A screening policy spec-
ifies the age at which to start screening, the PSA level that
triggers a biopsy, which typically is age dependent, the inter-
val between PSA tests, and the age at which screening stops.

These authors use simulation or Markov models of cancer
spread over time and typically aim to maximize expected
quality-adjusted life years (QALYs). Bertsimas et al. [16] rec-
ognized that alternative screening models may lead to con-
flicting decisions. The authors’ optimization framework com-
pared three screening models [13, 15, 17] that estimate
quality-adjusted life expectancy (QALE). From these models
they identified 64 screening strategies (policies) that form an
efficient frontier based on the tradeoff between the average of
the three models’ assessments of the change in QALE com-
pared to no screening, and the minimum of the three models’
assessments of the change in QALE compared to no
screening.

In 1989, Hodge et al. [18] standardized the placement of
needles in the biopsy procedure by developing the sextant
method in which six needles were placed in specified posi-
tions. Because the sextant method missed many significant
tumors, researchers including Presti et al. [19] and Epstein
et al. [20] developed procedures in which additional needles
were placed more laterally, that is, toward the edges of the
prostate. In the next section we show the placement of needles
in the sextant method as well as the locations of additional
needles placed more laterally.

The output of a prostate biopsy typically shows the identity
and number of needle cores that are positive for cancer, the
length of cancer in each core, the fraction of core length con-
taining cancer, and the pathology of the cancer detected as
measured by the Gleason score. A higher Gleason score iden-
tifies a more aggressive tumor. The Gleason score consists of
two integers or grades, each between 2 and 10. The first grade
represents the score for the primary pattern of the tumor (more
than 50% of the total pattern viewed), while the second grade
represents the score of the secondary pattern. These two scores
are added to obtain the total Gleason score. A total Gleason
score of 6 or less would be classified as low grade cancer.
Scores above 6 indicating higher grade tumors would gener-
ally lead to immediate treatment regardless of the amount of
cancer found on biopsy.

The forgoing discussion highlights the screening dilemma.
Screening will identify and then immediately treat some im-
portant cancers. But at the same time treatment (surgery or
radiation) in response to positive biopsies has led to a high
proportion of unnecessary treatments with negative conse-
quences due to the risks of surgery or radiation, and the asso-
ciated side effects of impotence and incontinence. A key prob-
lem in prostate cancer research and practice that we address in
this paper is the difficulty in distinguishing between signifi-
cant tumors that should be treated immediately and clinically
insignificant tumors to be monitored by active surveillance.
Boccon-Gibod aptly described this as Bidentifying the tigers
from the pussycats.^ [21]. To address this problem, re-
searchers using statistical regression analysis developed
criteria and nomograms to predict cancers they call either
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minimal or indolent based on biopsy results, prostate specific
antigen (PSA), and other factors [22–29]. The well-known
Epstein criteria [22, 23] that were developed using sextant
biopsies predicts the presence of minimal cancer if 1) PSA
density (PSA/prostate volume) < 0.15 ng/mL; 2) Gleason
score ≤ 6; 3) cancer in two or fewer biopsy cores; and 4) no
more than 50% cancer in any single core. The authors of
nomograms [24–29] evaluated decision rules that specified
no surgery (active surveillance) if the probability of minimal
cancer exceeded varying thresholds. These studies have accu-
racies of 80% or more based on the area under the receiver
operating characteristic curve (AUC), but the decision rules
have performed much less well in correctly classifying tumors
found on biopsy as either minimal or significant. Steyerberg
et al. [26] reported that the rule no surgery if the probability of
indolent cancer >30% would have misclassified only 7% of
indolent tumors (calling for surgery and overtreatment) but
65% of important cancers (calling for no surgery). The rule
no surgery if the probability of indolent cancer >60% would
have misclassified only 15% of important cancers but 54% of
indolent cancers. In a validation study of several nomograms,
the Kattan et al. [24] and Steyerberg et al. [26] nomograms
performed best, while all were more accurate in identifying
significant cancers than they were at identifying indolent ones
[30]. Nguyen and Kattan discuss the strengths and limitations
of nomograms [31].

A shortcoming of the regression/nomogram approach is
that it is based on a particular number of needle cores, and
thus one cannot determine the effect of increasing that number
and changing the length of needles, which we do in this paper.
In most of the regression/nomogram approaches cited above
biopsies mainly followed the sextant method [22–29]. In
Section 5 (Discussion and conclusions), we identify and dis-
cuss three lesser-known nomograms based on 12-core biop-
sies, which perform better than the sextant-based regression/
nomograms in terms of sensitivity and specificity [32–34],
findings that are consistent with the predictions of our model.

According to the 2016 version of the European Association
of Urology (EAU) Guidelines on prostate cancer, TRUS-
guided systematic prostate biopsy is the standard of care with
10–12 cores taken [35]. In arriving at this recommended stan-
dard of care, the EAU guidelines paper discusses some en-
couraging studies of the benefits of multi-parametric magnetic
resonance (MRI) imaging in detecting aggressive tumors, but
report that two randomized trials to evaluate the benefits of
MRI combined with systematic biopsies showed contradicto-
ry results [35].

The EAU guidelines paper notes that since the current U. S
Preventative Task Force recommendation on screening there
has been a significant number of men whose aggressive can-
cers have not been detected [35]. For screening to be useful, an
effective decision rule is needed to decide, after biopsy, which
patients should be treated immediately and which should be

followedwith active surveillance. In this paper we address this
need. The overall aim of our new decision analysis approach,
which is based on computer simulation and probability model-
ing, is to improve the ability to distinguish minimal (indolent)
tumors from significant cancers, and in particular to determine
how increasing the number of cores in TRUS-guided biopsy
beyond the current norm of 10–12 would affect this ability to
distinguish.

In a broader sense, our research relates to improving health
care delivery. Health care researchers and clinicians have in-
tensified their focus on improving patient experience and out-
comes, and reducing costs. The Triple Aim methodology de-
veloped by the Institute for Healthcare Improvement (IHI) is a
framework that identifies three aims: improving the health of
populations, improving the experience of care (including qual-
ity and patient satisfaction), and reducing per capita costs of
health care [36]. Better prostate cancer treatment decision
making leads to improvements in health care delivery as it
relates to the Triple Aim dimensions. Better decision models
improve patient outcomes by not delaying the treatment of
significant cancers, which will reduce the incidence of meta-
static disease and prostate cancer deaths. It will also lower the
number of unnecessary treatments that lead to diminished
quality of life. Better models should improve patient satisfac-
tion and the experience of care by giving the patient the op-
portunity to participate in the decision making process, pro-
viding the patient with the information needed to make more
informed choices, including useful predictions of the severity
of his disease, and incorporating patient preferences regarding
the cost tradeoffs between treating an insignificant tumor and
not immediately treating a small or medium cancer (which are
inputs to the model developed in this paper). Better patient
outcomes should also lead to increases in patient satisfaction.
Finally, improvements in decision making will reduce the
costs associated with unnecessary treatments as well as those
related to managing the progression of disease in patients
whose treatments were delayed.

2 Mathematical models

2.1 Simulation model

Our Excel computer simulation model is similar to that of
Daneshgari et al. [37].We represent the prostate as an ellipsoid
and tumors as spheres, with the tumor centers randomly locat-
ed in the posterior part of the prostate. We made use of the
prostatectomy data set of Epstein et al. [22, 23] of 157 men
with negative digital rectal exams who underwent radical
prostatectomy. These authors reported after surgery tumor vol-
ume V (in cc) in six intervals: V < 0.2 (17% of cases), 0.2 ≤V
< 0.5 (17% of cases), 0.5 ≤V< 1.0 (13% of cases), 1.0 ≤V <
4.0 (42% of cases), 4 ≤V< 10.0 (8% of cases), and V ≥ 10
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(3% of cases). We combined the two smallest intervals and
included the 3% of cases with V ≥ 10 in the 4 cc to 10 cc
interval. This gave us tumors of four different volumes: min-
imal, small, medium and large. We defined a minimal tumor
as one that is less than 0.5 cc in volume [38], and represented it
in the simulation with a tumor of 0.25 cc. We defined a small
tumor as having a volume between 0.50 cc and 1.0 cc, and
represented it by a tumor of 0.75 cc. A medium tumor had a
volume between 1.0 cc and 4.0 cc, and was represented as
2.5 cc, and a large tumor had a volume between 4 cc and
10 cc, and was represented as 7 cc. Prostate tumors are gen-
erally multi-focal [39] and we assumed each tumor consisted
of three foci, one major and two minor. The major tumors
were 0.25 cc, 0.75 cc, 2.5 cc, and 7 cc, while eachminor tumor
was 1/6 the size of its corresponding major tumor. Following
Daneshgari et al. [37] and based on their measurements of 159
radical prostatectomy specimens, our simulated prostates had
ratios of length to height to width of 3: 2.7: 1.9. We overlaid
three sets of lines onto the prostate as shown in the posterior
(axial) view of the simulated prostate in Fig. 1a and b. The A
line is used as a reference, the two B lines represent the po-
tential positions of needles under the sextant method, while
the two C lines represent the positions of laterally placed
needles. The x axis represents prostate width, the y axis rep-
resents prostate length, and the z axis, which is perpendicular
to the x-y plane, represents prostate depth. Figure 1a and b
also show the horizontal centerline, which bisects the length of
the prostate. We simulated the placement of 6 (sextant meth-
od), 14, and 20 needles in prostates of size 30 cc or 55 cc, with
needles of length 1.5 cm inserted perpendicular to the x-y
plane. We assumed each needle removed a 1.5 cm long core
of tissue. The placements of 6 (sextantmethod) and 14 needles
are shown in Fig. 1a and b. In the 6 needle case 3 needles were
positioned on each B line, with each B line halfway between
the A line and the far edge of the prostate. In the 14 needle
case, additional needles were positioned laterally along the C
lines. In this case (and the 20 needle case), each B line was
moved to the left toward the center of the prostate to improve
spacing. Each B line was 1/3 of the distance from the A line to
the far edge of the prostate, and each C line was 2/3 of the
distance from the A line to the far edge of the prostate. In the
14 needle case 5 needles were positioned on each B line and 2
needles were positioned on each C line. In the 20 needle case
(figure not shown), 6 needles were equally spaced on each B
line, while 4 needles were equally spaced on each C line.

The needles were not placed evenly across the prostate
because tumor density is not uniform. Zeng et al. [40] showed
that the density of tumor incidence is highest in the lateral
areas of the prostate, which supports the practice of placing
needles more laterally [19, 20]. Based on the Zeng et al. results
[40], for each tumor size, we randomly placed the center of the
tumor within the prostate in such a way that 1/3 of the tumor
fell in each lateral area, from the C lines to the edges of the

prostate, with 1/3 in the remainder of the prostate. Because the
lateral areas represent a relatively small volume of the pros-
tate, placing 1/3 of the tumors in each lateral area reflects the
higher tumor density in those areas. If a tumor sphere was
partially outside the prostate, we added the volume outside
to the volume inside. We did this by increasing the radius of
the segment lying inside the prostate. Our decision rule to treat
or not to treat is based on the total length of cancer found in
biopsy cores.We determined from our simulation experiments
that our results were not sensitive to the incidence distribution;
in particular, we found that using an incidence of 40% of
tumors in each lateral area produced the same optimal cutoff
values for our decision rule as the tumor incidence of 1/3 in
each lateral area.

With a plane parallel to the x-y plane, we divided the pros-
tate into two parts—posterior and anterior, and randomly gen-
erated tumor centers in the posterior part. The distance from

B     A      B

C    B   A   B C

a

b

Fig. 1 a Positioning of Six Needles. The A line is used as a reference. 3
needles were placed on each B line as shown. Each B line was halfway
between the A line and the far edge of the prostate. b Positioning of 14
Needles. The A line is used as a reference. Each B line was 1/3 of the
distance from the A line to the far edge of the prostate, and each C line
was 2/3 of the distance from the A line to the far edge of the prostate. As
shown, 5 needles were placed on each B line, and 2 needles were placed
on each C line.
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the dividing plane to the posterior apex was 0.4 times the
prostate height. Rather than dividing the prostate into equal
volume posterior and anterior parts, this approach made dis-
tant tumors more accessible to the needles. The simulation
results we report are based on this approach. Sensitivity anal-
ysis showed that dividing the prostate into equal volume pos-
terior and anterior parts did not change the optimal cutoff
values of our decision rule. Each simulation experiment of
10,000 runs specified the prostate volume (30 cc or 55 cc),
the volume of the tumor, and the number of needles. The
output of each experiment was the probability of detection
and the probability distribution of the total length of cancer
found in the needle cores.

2.2 Estimating the prevalence of minimal, small,
medium, and large tumors

We consider patients with negative digital rectal exam
and PSA between 4 ng/mL and 10 ng/mL These pa-
tients are similar in that their PSA levels are elevated
but not extremely so. Tanaka et al. refer to this range of
PSA values as Bthe grey zone.^ [41]. We did not have
access to individual PSA score values in the data set we
used [22, 23], but the data did allow us to focus on
patients in this important grey zone range of PSA
values. Our decision rule is treat if total length (TL)
of cancer in biopsy cores > c, the cutoff, and active
surveillance otherwise, provided pathology is favorable
(combined Gleason score less than 7). If combined
Gleason score is 7 or more, decision is always to treat.
Kajikawa et al. found that total length of cancer in
cores is the optimal measure for predicting the presence
of minimal cancer [33]. The determination of the opti-
mal cutoffs, which we carry out in Section 3.2, required
estimates of the prior probabilities of tumors of various
sizes. Epstein et al. reported on 157 patients with neg-
ative digital rectal exams, median gland volume of
55.5 cc, and median PSA of 8.1 ng/mL, who underwent
radical prostatectomy from 1988 through 1992 [22, 23].
We assumed most biopsies were performed using the
sextant method (the standard at the time), and that all
positive biopsies led to surgeries. We used their reported
after-surgery tumor volume percentages for patients with
PSA between 4 ng/mL and 10 ng/mL as posterior prob-
abilities of minimal (Min), small (S), medium (Med),
and large (L) tumors, given a positive sextant biopsy.
Let P(Min), P(S), P(Med), and P(L) represent the prior
(before biopsy) probabilities of minimal, small, medium,
and large tumors respectively. Let P(Min| +) be the
probability of a minimal tumor given a positive sextant
biopsy, let P(+|Min) be the probability of a positive
biopsy given a minimal tumor, and let P(+) be the prob-
ability of obtaining a positive biopsy for a patient in

our target population. Applying Bayes’ Theorem, we
backed out P(Min) in the following way. We have

P Minjþð Þ ¼ P Minð ÞP þjMinð Þ
P þð Þ ;

Rearranging terms we have

P Minð Þ ¼ P Minjþð ÞP þð Þ
P þjMinð Þ :

The three terms on the right hand side of this equation were
determined as follows: P(Min│+), the posterior probability of
a minimal tumor, is 0.3, from the Epstein et al. data set
[22, 23]; it is the fraction of patients identified after surgery
as having minimal tumors (less than 0.5 cc), P(+) = 0.2. This
value is based on data reported by Cooner et al. [42], Catalona
et al. [43], and Schwartz et al. [44] for biopsies performed in
periods 1987–1989, 1991–1992, and 1993–1997 respectively,
when the sextant method was the norm, which showed that for
patients with impalpable tumors and PSA between 4 and 10,
about one in five biopsies were positive. P(+|Min), the prob-
ability of detecting a minimal tumor in a 55 cc prostate (the
median gland volume in the Epstein et al. data set [22, 23])
using the sextant method, was estimated from our simulations
(it is 0.5103). Substituting these values into the above equa-
tion for P(Min) led to the prior (to biopsy) probability
P(Min) = 0.118. Similar calculations led to the prior probabil-
ities or prevalences of small, medium, and large tumors re-
spectively. They were P(S) = 0.043, P(Med) = 0.086, and
P(L) = 0.022. The probability of no cancer was 0.731.
Bayes’ Theorem is typically used to determine positive pre-
dictive values (posterior probabilities) given prior probabili-
ties (prevalences). Here we reversed the procedure and
worked backwards from the posterior probabilities to obtain
the priors (prevalences).

3 Finding optimal cutoff values: expected loss
equation

3.1 Two types of misclassification errors

As presented earlier, our decision rule is treat if total length
(TL) of cancer in biopsy cores > c, the cutoff, and active
surveillance otherwise, provided pathology is favorable (com-
bined Gleason score less than 7). If combined Gleason score is
7 or more, the decision is always to treat. In applying this
decision rule, there are two misclassifications: treating a min-
imal tumor, and not treating a small or medium tumor (In our
simulations, we found for all reasonable cutoff values that
large tumors were never misclassified). If the cancer is mini-
mal it will be misclassified and treated if TL > c, the cutoff
value. If the cancer is significant (small or medium), it will be
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misclassified and not treated if TL ≤ c. The cost of
misclassifying and treating a minimal tumor includes the
monetary cost of the treatment (surgery or radiation) plus
associated mortality and morbidity, as well as possible im-
potence and incontinence, while the costs of not treating
larger tumors relate to disease progression. For a given
number of needle cores and prostate volume, we deter-
mined the cutoff, c*, that minimizes the expected or aver-
age loss associated with a patient in our target population
about to have a biopsy. The average loss is the sum of three
terms. Each term is the prior probability of a tumor of spec-
ified size (minimal, small, or medium) times the probability
of misclassification times the cost of misclassification. As
the cutoff increases, the likelihood of treating a minimal
tumor decreases while the likelihood of missing small and
medium tumors increases. By varying the cutoff, we obtain-
ed the optimal cutoff value which minimized the expected
loss.

3.2 Finding the optimal cutoff value

For each prostate volume (30 cc or 55 cc), we found by our
simulation experiments the frequency distributions of total
length (TL) of cancer in biopsy cores. For a specified decision
rule cutoff c, a misclassification cost, CMin, occurs if the can-
cer is minimal and treated (its TL > c); a misclassification cost,
CS, occurs if the tumor is small and not treated (its TL ≤ c); and
a misclassification cost, CMed, occurs if the tumor is medium
and not treated (its TL is ≤ c). Rather than estimating these
costs directly, which for CS and CMed would require a tumor
spread model [14, 15], we employ sensitivity analysis varying
the ratios of the cost of not detecting a small or medium tumor
to the cost of treating a minimal tumor. We define these ratios
as kS = CS/CMin, and kMed = CMed/CMin. Note that these ratios
may vary with individual patient age and preferences.

The expected loss for a patient in our target population
about to undergo a biopsy is given by

E Lossð Þ ¼ CMinP TL > cjMinð ÞP Minð Þ þ CSP TL≤cjSð ÞP Sð Þ þ CMedP TL≤cjMedð ÞP Medð Þ
¼ CMinP TL > cjMinð ÞP Minð Þ þ ksCMinP TL≤cjSð ÞP Sð Þ þ kMedCMinP TL≤cjMedð ÞP Medð Þ
¼ CMin P TL > cjMinð ÞP Minð Þ þ ksP TL≤cjSð ÞP Sð Þ þ kMedP TL≤cjMedð ÞP Medð Þf g

4 Results

Our simulation results show that increasing the number
of needles increased the area under the receiver operating
characteristic curve (ROC) (Fig. 2). The ROC curve is a
graphical plot that shows the diagnostic ability of a bi-
nary classifier as its discrimination threshold is varied. In
our case the discrimination threshold is the cutoff value,
c, of our decision rule. Sensitivity (1 – type II error) is
the probability of not treating a minimal tumor if it is
present, while specificity (1 – type I error) is the proba-
bility of treating a small tumor if it is present. Each point
on a particular curve represents a cutoff value, c. Moving
from left to right on a curve shows increasing cutoff
values in increments of 0.2 cm. As the cutoff value in-
creases, the probability of not treating a minimal tumor
(sensitivity) increases, while the probability of treating a
small tumor (specificity) decreases and hence 1 – speci-
ficity increases. Ideally, one wants to achieve both high
sensitivity and high specificity. In our case (Fig. 2), the
AUC measures how well our model performs in
distinguishing between minimal tumors that should not
be treated and small tumors that should be. The diagnos-
tic ability increases with increases in the area under the
curve. As Fig. 2 shows, and as we discuss in more detail

below, sampling with 20 needles achieved both high
levels of sensitivity and specificity.

Figure 3 (30 cc prostate) and Fig. 4 (55 cc prostate) show
expected loss expressed in terms of CMin versus cutoff for 6,
14, and 20 needles. For the 30 cc prostate with kS = CS/CMin =
2 (that is CS = 2CMin) and kMed = CMed/CMin = 8 (CMed =
8CMin), shown in Fig. 3, panel a, minimum expected losses
for 6, 14, and 20 needles are 0.0466CMin, 0.0190CMin, and
0.0121CMin. For 14 needles, compared to the 6-needle base
case, this is a reduction in expected loss of 59% at the optimal
cutoffs, while 20 needles provide an additional reduction of
15% compared to the 6-needle base case. For the 30 cc pros-
tate with kS = CS/CMin = 1 (that is CS = CMin) and kMed =
CMed/CMin = 4 (CMed = 4CMin), shown in Fig. 3, panel b, min-
imum expected losses for 6, 14, and 20 needles are
0.0299CMin, 0.0121CMin, and 0.0072CMin. For 14 needles
compared to the 6-needle base case, this reduction at optimal
cutoffs is 60% for 14 needles, while 20 needles provide an
additional reduction of 16% compared to the 6-needle base
case. For the 55 cc prostate with kS = CS/CMin = 2 (that is CS =
2CMin) and kMed = CMed/CMin = 8 (CMed = 8CMin), shown in
Fig. 4, panel a, minimum expected losses for 6, 14, and 20
needles are 0.0896CMin, 0.053CMin, and 0.0305CMin. For 14
needles compared to 6 needles, this is a reduction of 41%,
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while 20 needles compared to the 6-needle base case, provides
an additional reduction of 25%. For the 55 cc prostate with
kS = CS/CMin = 1 (that is CS = CMin) and kMed = CMed/CMin = 4
(CMed = 4CMin), shown in Fig. 4, panel b, minimum expected
losses for 6, 14, and 20 needles are 0.0636CMin, 0.0378CMin,
and 0.0199CMin. For 14 needles compared to 6 needles, this is
a reduction of 41%, while 20 needles compared to the 6-
needle base case provides an additional reduction of 28%.
Thus the benefit of 20 needles is significantly greater in the
larger 55 cc prostate.

Table 1 shows optimal cutoffs as a function of prostate
volume and number of needles. For each cutoff, the table
lists the ks and kMed values, the percentages of minimal
tumors hit (detected and treated) and the percentages of

smal l and medium tumors missed (not t reated) .
Sensitivity is 1 – percent of minimal tumors hit and spec-
ificity is 1 – percent of small tumors missed. These per-
centages were obtained from our simulation experiments.
Table 1 shows that increasing the number of needles (from
6 to 14 to 20) decreases both minimal tumors hit and small
and medium tumors missed, hence increasing both sensi-
tivity and specificity. The optimal cutoffs are largely insen-
sitive to changes in the cost ratios. We observe in Table 1
that the optimal cutoff c* moved at most one interval of
tumor length as the cost ratios, kS and kMed were varied.
Also as shown in Figs. 3 and 4, each expected loss curve is
very flat near its minimum cutoff value, and hence the
difference in expected loss between adjacent cutoff values
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Fig. 2 ROC Curves for 6, 14, and
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minimal tumor if it is present,
specificity is the probability of
treating a small tumor if it is
present; Panel a is 30 cc prostate,
Panel b is 55 cc Prostate; Area
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is very small. For example, as shown in Fig. 4, panel b, the
optimal cutoff for 20 needles when kS = kMin and kMed =
4kMin is 1.4 cm with expected loss of 0.0199CMin. At the
adjacent cutoff of 1.2 cm on the same 20 needle curve of
Fig. 4, panel b, which is the minimum cutoff for 20
needles in Fig. 4, panel a (based on kS = 2kMin and
kMed = 8kMin) the expected loss is 0.0206CMin which is
only 3.5% higher than the loss of 0.0199CMin at the opti-
mal cutoff. This supports our decision to use sensitivity
analysis varying the cost ratios, rather than employing a
tumor growth model to estimate the costs of missing small
and medium tumors [14, 15].

Figure 5a plots for a 55 cc prostate and 20 needles the
frequency distributions of length of cancer in cores for a
minimal tumor (lower panel) and a small tumor (upper pan-
el); each distribution was found from 10,000 simulation
runs. The misclassifications occurred because of the over-
lap in the two frequency distributions: a fraction of the

minimal tumor lengths fell above the cutoff and would
mean treatment of the minimal tumor, while a fraction of
the small tumor lengths fell below it and would mean miss-
ing the small tumor. The shaded area in the lower panel to
the right of the optimal cutoff represents the fraction of
minimal tumors treated (misclassifications), which is
0.090 ± 0.00291. The shaded area in the upper panel to the
left of the optimal cutoff represents the fraction of small
tumors missed, which is 0.148 ± 0.00361 These misclassi-
fication percentages are also shown in the last line
of Table 1. Figures for 6 and 14 needles (not shown) dem-
onstrated that increasing the number of needles reduced the
overlap of the two frequency distributions, which is
reflected in the results in Table 1.

1 We calculate the standard error of the proportion estimate from 10,000 inde-
pendent simulation runs (trials) using the binomial distribution.
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Fig. 3 Expected Loss Versus
Cutoff for 6, 14, and 20 Needles,
30 cc Prostate; Panel a has cost of
missing small tumor 2 times cost
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missing medium tumor 8 times
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Panel b has cost of missing small
tumor equal to cost of hitting
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medium tumor 4 times cost of
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We experimented with different needle lengths and
found that a shorter needle degraded performance great-
ly. Figure 5a and b compare for a 55 cc tumor and 20
needles, the fraction of small tumors missed and the
fraction of minimal tumors treated under optimal cutoffs
for needles (and cores) of length 1.5 cm. and 1.0 cm
respectively. For the 1.5 cm needle and core, the aver-
age fraction of minimal tumors treated was a little
smaller (0.090 ± 0.0029 versus 0.103 ± 0.00304), while
the average fraction of small tumors missed was lower
by 57% (0.148 ± 0.0036 versus 0.343 ± 0.00475). We
found that for the 30 cc prostate and 14 needles, the
1.0 cm needle core compared to the 1.5 cm needle core
increased the expected loss at the optimal cutoffs by
71% (Fig. 6), while for the 55 cc prostate, 20 needle
case, the shorter 1.0 cm core increased the expected loss

at the optimal cutoffs by 55% (figure not shown).
Several authors have shown that longer core lengths
improved cancer detection and that core lengths obtain-
ed were often considerably shorter than the length of
the needle [45, 46]. We are not suggesting that 1.0 cm
needles are used in practice. But 1.5 cm needles are
commonly used and result in a significant fraction of
cores being 1.0 cm or less.

4.1 Posterior probabilities

An output of each 10,000 run simulation (gland size, tumor
size, and number of needles) is the frequency distribution of
the total cancer length in cores (TL) which we tabulated in
0.2 cm-wide intervals. Using these results, we apply Bayes’
Theorem to estimate the posterior probabilities or positive
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Cutoff for 6, 14, and 20 needles,
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predictive values of minimum, small, medium and large
tumors. The posterior probability of the presence of a

minimal tumor given that TL is greater than l centimeters
and less than or equal to u centimeters, is.

P Minjl < TL≤uð Þ ¼ P l < TL≤ujMinð ÞP Minð Þ
P l < TL≤uð Þ

¼ P l < TL≤ujMinð ÞP Minð Þ
P l < TL≤ujMinð ÞP Minð Þ þ P l < TL≤ujSð ÞP Sð Þ þ P l < TL≤ujMedð ÞP Medð Þ þ P l < TL≤ujLð ÞP Lð Þ

This formula was used to find the posterior probabilities of
a minimal (insignificant) tumor for each interval of tumor
length. Replacing Min by each of the other tumor sizes (S,
Med, L), yields the posterior probabilities of small, medium,
and large tumors as a function of interval of tumor length,
prostate volume, and number of needles. Table 2 (30 cc pros-
tate) shows for each interval of cancer length, the posterior
probabilities of an insignificant cancer. The probability of a

significant cancer is 1 – the probability of an insignificant
cancer. The table also shows the percent of positive biopsies
falling in each interval, obtained from our simulations.
Because our representations of the prostate and tumors are
idealized, these posterior probabilities are not ready to use
predictions for individual patients; but are encouraging with
respect to what could be achieved using amore detailed model
of the prostate and tumors. For the 20-needle biopsy a patient

Table 1 Optimal cutoff values as
a function of prostate volume and
number of needles

Prostate
volume

Number of
needles

Cutoff c*
(cm)

ks kMed Percent
minimal hit

Percent small
missed

Percent medium
missed

30 cc 6 1.0 0.5 4 6.1 46.7 1.5

1.0 1 4 6.1 46.7 1.5

0.8 2 4 12.7 32.6 1.1

0.8 2 8 12.7 32.6 1.1

14 1.6 0.5 4 2.1 22.4 0.0

1.6 1 4 2.1 22.4 0.0

1.4 2 4 6.7 13.0 0.0

1.4 2 8 6.7 13.0 0.0

20 2.0 0.5 4 1.0 14.1 0.0

2.0 1 4 1.0 14.1 0.0

1.8 2 4 4.2 8.6 0.0

1.8 2 8 4.2 8.6 0.0

55 cc 6 0.8 0.5 4 5.1 60.4 9.7

0.6 1 4 17.7 46.8 6.6

0.4 2 4 30.4 32.9 4.6

0.4 2 8 30.4 32.9 1.7

14 1.0 0.5 4 10.0 30.1 3.8

1.0 1 4 10.0 30.1 3.8

0.8 2 4 20.1 18.9 2.0

0.8 2 8 20.1 18.9 2.0

20 1.4 0.5 4 3.1 26.6 1.4

1.4 1 4 3.1 26.6 1.4

1.2 2 4 9.0 14.8 0.6

1.2 2 8 9.0 14.8 0.6

The term ks is the ratio of the cost ofmissing a small tumor to the cost of hitting and treating a minimal tumor, kMed

is the ratio of the cost of missing a medium tumor to the cost of hitting and treating a minimal tumor. The percent
of minimal tumors hit, the percent of small tumors missed, and the percent of medium tumors missed all decrease
with increases in the number of needles
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would have, in nearly all instances, a clear picture of whether
his cancer is highly likely to be insignificant. Only the
cancer length intervals of 1.6 - 1.8, 1.8 - 2.0, and 2.0 - 2.2
reflect some ambiguity. But for all other intervals of length of
cancer (92.2% of cases) the predicted probabilities of insignif-
icant cancer are either ≥0.94 or virtually 0, leaving little doubt
about the likely outcome. For the 20 needle, 55 cc prostate
case (table not shown), in 82.6% of cases the predicted prob-
abilities of insignificant cancer are either ≥0.89 or virtually 0.

5 Discussion and conclusions

This research contributes to the literature by presenting a new
approach for distinguishing minimal from significant cancers.
Previous research has focused on how the probability of tumor
detection changes with increases in the number of cores
[47–49]. Bjurlin et al., in an extensive review that included
18 and 21 core biopsies, concluded that increasing the number
of cores beyond 12 has only marginal benefits for cancer

Fig. 5 a Fraction of Small
Tumors Missed and Fraction of
Minimal Tumors Treated, 55 cc
Prostate, 20 Needles of Length
1.5 cm, Optimal Cutoff of 1.2 cm,
cost of missing small tumor is 2
times cost of hitting minimal
tumor, cost of hitting medium
tumor is 8 times cost of missing
minimal tumor. b Fraction of
Small Tumors Missed and
Fraction of Minimal Tumors
Treated, 55 cc Prostate, 20
Needles of Length 1.0 cm,
Optimal Cutoff of 1.0 cm, cost of
missing small tumor is 2 times
cost of hitting minimal tumor,
cost of missing medium tumor is
8 times cost of hitting minimal
tumor
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detection [50]. Irani et al. compared a 20-core scheme to a 12-
core approach and came to the same conclusion [49]. The
simulation results reported in the current paper are consistent
with the Irani et al. [49] findings, but show that the benefit of
more needles (20 in this case) lies not in increased detection,
but in the greater ability to distinguish minimal tumors from
larger ones. This is a new finding not previously reported in
the literature, and is consistent with statistical hypothesis test-
ing, which shows that increasing the sample size reduces type
II error. Classification errors occur because for an optimal
cutoff c* on total cancer length in biopsy cores, some fraction
of minimal tumor lengths will lie above c* and mean the
minimal cancer will be treated, some fraction of small cancer

lengths will lie below c* and mean the small but significant
tumor will not be treated, and some fraction of medium tumor
lengths will lie below c* and mean the medium tumor will not
be treated. Results confirmed the inadequacy of the sextant
method and showed the large benefits of increasing to 14
needles, and the additional significant gains from 20 cores,
especially in the case of the larger 55 cc prostate. These gains
should be even greater for prostates larger than 55 cc.
Increasing the number of needle cores on biopsy will also
provide more accurate estimates of Gleason score. Results
showed that needle core length matters in distinguishing min-
imal from larger tumors; the benefits of longer core lengths
need to be explored further. This decision analysis took into

Table 2 Posterior probabilities of
insignificant tumors, for 6, 14,
and 20 needles, 30 cc prostate

Length of
cancer in cm

6 needles 14 needles 20 needles

Percent
positive
biopsies

Probability
insignificant

Percent
positive
biopsies

Probability
insignificant

Percent
positive
biopsies

Probability
insignificant

0–0.2 2.85 0.90 1.15 1.00 0.42 1.00

0.2–0.4 9.09 0.89 3.77 1.00 1.58 1.00

0.4–0.6 10.10 0.83 6.07 0.99 2.33 1.00

0.6–0.8 11.74 0.84 9.72 0.99 5.04 1.00

0.8–1.0 6.25 0.55 7.85 0.96 5.83 1.00

1.0–1.2 6.42 0.40 8.12 0.91 9.31 0.99

1.2–1.4 3.70 0.12 4.85 0.80 7.86 0.98

1.4–1.6 3.68 0.04 3.62 0.57 6.71 0.94

1.6–1.8 2.89 0.01 2.70 0.27 3.90 0.84

1.8–2.0 3.45 0.00 2.10 0.08 2.36 0.61

2.0–2.2 3.55 0.00 2.12 0.02 1.53 0.28

2.2–2.4 3.32 0.00 1.80 0.00 1.41 0.01

2.4–2.6 3.57 0.00 1.57 0.00 1.41 0.00

2.6–2.8 3.88 0.00 1.25 0.00 1.43 0.00

2.8–3.0 … … … … … …

… … … … … … …
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Fig. 6 Comparing Needle Lengths: 30 cc Prostate, 14 Needles; expected loss was 71% greater for the 1.0 cm needle compared to the 1.5 cm needle. Cost
of missing small tumor 2 times cost of hitting minimal tumor, cost of missing medium tumor 8 times cost of hitting minimal tumor
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account the tradeoff between the cost of treating a minimal
tumor and the costs of not treating larger tumors, in determin-
ing an optimal decision rule, which is not part of the nomo-
gram modeling approach and hence heretofore has not been
done. The research also showed how Bayes’ Theorem can be
used to estimate posterior probabilities of tumors of different
sizes, i.e., to predict the severity of cancer, based on cancer
length found on biopsy. As noted earlier, basing the decision
rule on total length of cancer in biopsy cores is supported by
the work of Kajikawa et al. [33] who found that total length of
cancer in cores is the optimal measure for predicting the pres-
ence of small volume (minimal) cancer on radical prostatec-
tomy, to identify candidates for active surveillance.

Table 1 shows that sensitivity and specificity both in-
crease with increases in the number of needles. The model-
ing of the prostate and tumors in this paper is a simplified
one, but the results concerning sensitivity and specificity
are encouraging with respect to what might be achieved
using this approach in conjunction with a more refined
simulation such as the 3-D models of Noguchi et al. [51]
that captures prostate anatomy, and Kanao et al. [47] that
also model tumor anatomy.

Bul et al. [52] recognized that the Steyerberg et al. [26]
nomogram that predicts the probability of indolent cancer
and is used in the prostate cancer risk indicator (www.
prostatecancer-riskcalculator.com) has limited applicability
to extended biopsies of 12 or 18 needle cores. The
Steyerberg et al. [26] nomogram predictions are based on
the length of cancer found in sextant biopsies. Steyerberg
et al. [26] developed adjustment factors on cancer length by
performing extended biopsies on prostates obtained from
autopsies. For 12- and 18-needle biopsies total cancer length
would be divided by 2.03 and 2.72 respectively. This would
provide estimates of what tumor lengths would have been if
sextant biopsies had been performed. But it is important to
emphasize that these adjustment factors are not substitutes
for actually basing the nomogram on extended biopsies.
Based on the results reported here, a regression-based model
or nomogram to identify insignificant cancer based on a 12 or
18–20 needle protocol would improve both sensitivity and
specificity with greatest gains for the 18–20 needle biopsy.
Komai et al. [32], Kajikawa et al. [33], and Kim et al. [34]
obtained results that are consistent with this prediction. Komai
et al. [32] reported on a regression model based on extended
biopsies with 12 or more needles. These authors developed a
cutoff rule based on total cancer length in cores divided by
number of positive cores and obtained anAUC of 91% and for
a specific cutoff, sensitivity of 80% and specificity of 86%,
results that to our knowledge are significantly better than re-
sults previously reported by others. Komai et al. [32] also
applied the Epstein criteria [22, 23] to their patient population
and found an AUC of only 81%. Kajikawa et al. [33] based on
12-core biopsies developed a nomogram with AUC of 86%

and sensitivity and specificity of 77% for a specific cutoff on
total tumor length. The nomogram of Kim et al. [34] based on
12-core biopsies obtained an AUC of 87% and a sensitivity
and specificity at a particular cutoff that from their Fig. 3 is
about 80%. The Kattan et al. [24] nomogram and the
Steyerberg et al. [26] nomogram are based on sextant biopsies.

The model developed in this paper shows the decision
making benefit of increasing the number of biopsy cores from
the current norm of 10–12 to about 20, as well as the benefit of
using longer biopsy needles. These are important insights that
follow from the analysis, but before this model can be used in
practice it needs to be applied in conjunction with a computer
simulation having more detailed prostate and tumor represen-
tations. In addition, future regression prediction models and
nomograms based on this recommended increase in cores
should significantly improve sensitivity and specificity.

The findings of this study have policy implications regard-
ing the continuing debate about whether the benefits of
screening for prostate cancer outweigh the costs.
Distinguishing minimal from significant tumors will improve
decision making and thereby reduce the costs and increase the
benefits of screening. This research contributes to the Triple
Aim objectives of improving the experience of care, reducing
costs, and improving outcomes. Better decisions will lower
the costs of unnecessary treatments, and improve outcomes
by reducing prostate deaths, metastatic disease, and the over-
treatment of insignificant tumors. It will enhance the experi-
ence of care by giving patients the opportunity to participate in
decision-making while providing them with useful estimates
of the likelihood of significant disease.
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