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Appendix: Not Intended for Print Publication

A Proofs

Proof of Proposition 1. Expected patient revenue equals E[R ∧ κ], where R ∼ rN(m,σ2) and

κ = (λ1 + λ2)K. Then, E[R ∧ κ] = rσE[Z ∧ z] + rm where Z is the standard normal r.v. and

z = (κ − rm)/(rσ). Note that E[Z ∧ z] = −φ(z) + z[1 − Φ(z)] which follows directly from the

properties of the normal distribution (e.g., Zipkin, 2000, p.459). Then, substituting m̄ = m/λ,

σ̄2 = σ2/λ, and κ = λK and rearranging terms yields total expected revenue as

E[R ∧ κ] = λ

[

K − (K − rm̄)Φ

(

K/r − m̄

σ̄/
√
λ

)

− rσ̄√
λ
φ

(

K/r − m̄

σ̄/
√
λ

)]

.

The expected cost is c1m1λ1 + c2m2λ2 +A = c̄λ+A and the result follows.

For the comparative static results,

∂π

∂K
= −1

2
λ

(

2√
π

∫ z̃

0
e−t2dt− 1

)

where z̃ =
λ(K − rm̄)√

2rσ̄
.

Because 2√
π

∫ z̃
0 e

−t2dt is the Gaussian error function, bounded above by 1, ∂π
∂K > 0. Moreover,

some additional algebra shows ∂2π
∂K2 < 0. So, π is concave increasing in K. Further,

∂2π

∂r2
= −e

−λ(K−rm̄)2

2r2σ̄2 K2λ3/2√
2πr3σ̄

< 0,
∂π

∂σ1
= −λ1e

−λ(K−rm̄)2

2r2σ̄2 rσ1√
2πλσ̄

< 0,
∂π

∂σ2
= −λ2e

−λ(K−rm̄)2

2r2σ̄2 rσ2√
2πλσ̄

< 0,

∂π

∂c1
= −λ1m1 < 0,

∂π

∂c2
= −λ2m2 < 0,

∂π

∂A
= −1 < 0.

Thus, π is concave in r, decreasing in σ1 and σ2, and linearly decreasing in c1, c2, and A.

Proof of Proposition 2. Fix t, i, and j, and consider one unit of class i, j fluid arriving at

time t, the fraction remaining in the system at time s ≥ t equals Pr(Y j
i > s − t), where Y j

i is a

generic random variable with density f ji (·). Note that lifetimes are not random in this model so

Pr(Y j
i > s − t) is the exact fraction that remains, not the expected fraction. Then the terminal

value vji (t) associated with one unit of class i, j fluid arriving at time t is given by

vji (t) = vji Pr(Y
j
i > T − t) = vji

∫ ∞

T−t
f ji (x)dx.

The cumulative (potential) revenue rji (t) over [0, T ] from one unit of class i, j fluid arriving at time

t is given by

rji (t) = r

∫ T

t
Pr(Y j

i > s− t)ds = r

∫ T−t

0
Pr(Y j

i > x)dx = r

∫ ∞

0
(x ∧ (T − t))f ji (x)dx,
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where the final equality is achieved with an interchange of integrals. The derivation of cji (·) follows
similarly.

Proof of Proposition 3.

To simplify the analysis, we define for all i, t, q,

δi(t; q) = K + (ri(t)−K)q − ci(t) + vi(t),

δ̃i(t; q) = −r̃i(t)q + c̃i(t)− ṽi(t),

and make the following technical assumption.

Technical Assumption 1: The number of times the functions δi(·; q) and δ̃i(·; q) change sign on

[0, T ] is uniformly bounded for all q ∈ [0, 1].

This is a reasonable assumption given that (ri(·), ci(·), vi(·)) and (r̃i(·), c̃i(·), ṽi(·)) are smooth

functions. Moreover, it is satisfied when the length of stay distribution is exponential or gamma.

By the technical assumption, there exists N , and for i = 1, 2, continuous trigger functions

{tij(·), t̄ij(·)}Nj=1 and {τ ij(·), τ̄ij(·)}Nj=1 corresponding to the points at which δi(·; q) and δ̃i(·; q)
change sign, respectively, such that for all i, q

0 ≤ ti1(q) ≤ t̄i1(q) ≤ ... ≤ tiN (q) ≤ t̄iN (q) ≤ T,

0 ≤ τ i1(q) ≤ τ̄i1(q) ≤ ... ≤ τ iN (q) ≤ τ̄iN (q) ≤ T,

which are defined as follows. We will only construct {τ ij(·), τ̄ij(·)}Nj=1; and the construction of

{tij(·), t̄ij(·)} follows similarly.

To this end, fix i = 1, 2 and q ∈ [0, 1]. If δ̃i(·; q) is always positive, then let τ i1(q) = 0, τ̄i1(q) = T

and τ ij(q) = τ̄ij(q) = T for j = 2, ..., N . If δ̃i(·; q) is always non-positive, then let τ ij(q) = τ̄ij(q) = T

for all j. Otherwise, δ̃i(·; q) changes sign at least once. Let 0 < γ1i < ... < γMi < T denote the

times at which δ̃i(·; q) changes sign, where 1 ≤ M ≤ 2N . For notational convenience, let γ0i = 0

and γM+1
i = T . There are two cases to consider:

Case i: The sign switches to positive at γ1i . Then

(τ ij(q), τ̄ij(q)) =











(γ2j−1
i , γ2ji ) for 1 ≤ j ≤ dM2 e,

(T, T ) otherwise.

Case ii: The sign switches to negative at γ1i . Then

(τ ij(q), τ̄ij(q)) =











(γ
2(j−1)
i , γ2j−1

i ) for 1 ≤ j ≤ bM2 + 1c,
(T, T ) otherwise.

3



The trigger functions tij(·) and t̄ij(·) are defined similarly. Moreover, assumption (5) ensures

that for every q and some i, 0 ≤ ti1(·) < t̄i1(·) < T . Given the trigger functions, we write

F (q) = −K(λ1 + λ2)T +R(0) +
2
∑

i=1

λi

∫ T

0
ri(s)ds

+
2
∑

i=1

N
∑

j=1

∫ t̄ij(q)

tij(q)

ri(t)−K

ηsi
(K + (ri(t)−K)q − ci(t) + vi(t))dt

+
2
∑

i=1

N
∑

j=1

∫ τ̄ij(q)

τ ij(q)

−r̃i(t)
ηli

(−r̃i(t)q + c̃i(t)− ṽi(t))dt.

Note that the trigger functions may not be differentiable at all points. However, it is straightfor-

ward to argue that their right and left derivatives exist. Therefore, a viable proof strategy to show

differentiability is to establish that the right and left-derivatives of F are equal. In the interest of

brevity, we will proceed as if the trigger functions are differentiable, but it will be clear in calcu-

lating F ′ that whether we use the left or the right derivatives makes no difference in calculating F ′

because the terms involving t′ij , t̄
′
ij , τ

′
ij , τ̄

′
ij will vanish.

To be more specific, note by Leibnitz differentiation rule that

F ′(q) =
2
∑

i=1

N
∑

j=1

[

∫ t̄ij(q)

tij(q)

(ri(t)−K)2

ηsi
dt+

∫ τ̄ij(q)

τ ij(q)

(r̃i(t))
2

ηli
dt

]

+
2
∑

i=1

N
∑

j=1

[

ri(t̄ij(q))−K

ηsi
δi(t̄ij(q); q)t̄

′
ij(q)−

ri(tij(q))−K

ηsi
δi(tij(q); q)t

′
ij(q)

]

−
2
∑

i=1

N
∑

j=1

[

r̃i(τ̄ij(q))

ηli
δ̃i(τ̄ij(q); q)τ̄

′
ij(q)−

r̃i(τ ij(q))

ηli
δ̃i(τ ij(q); q)τ

′
ij(q)

]

,

where the last two summations vanish because each of the summands is zero (by definition of the

trigger functions and δi, δ̃i) regardless of whether one uses the left or the right derivatives. Then

because the trigger functions are continuous, F is continuously differentiable with

F ′(q) =
2
∑

i=1

N
∑

j=1

∫ t̄ij(q)

tij(q)

(ri(t)−K)2

ηsi
dt+

2
∑

i=1

N
∑

j=1

∫ τ̄ij(q)

τ ij(q)

(r̃i(t))
2

ηli
dt.

Moreover, F ′(q) > 0 because 0 ≤ ti1(q) < t̄i1(q) ≤ T for some i by assumption (5). Therefore, F (q)

is strictly increasing on (0,1).

Proof of Theorem 1. Note that the hospice manager’s problem (P) is equivalent to the optimal

control problem (40)-(46) presented in Appendix B, where αi(t) = żi(t) and θi(t) = Θ̇i(t) for all

i, t. Similarly, the dual optimal control problem (60)-(65) is equivalent to the dual problem (D),
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introduced in Appendix B, with ṗ(t) = 0 and p(t) = (K(1 − q), q) for all t. Rockafellar (1970)

provides a duality relationship between (40)-(46) and (60)-(65), whereby the two formulations have

the same optimal objective. Moreover, by Theorem 5 of Rockafellar (1970), the optimal solutions

to (40)-(46) and (60)-(65), must satisfy

(ṗ(t), p(t)) ∈ ∂L(t, (z(t), ζ(t)), (ż(t), ζ̇(t))) (1)

for t ∈ [0, T ]. Also note by Proposition 8.12 of Rockafellar and Wets (1997) that for any proper

convex function f , its subgradient set ∂f(x̄) at x̄ is given by

∂f(x̄) = {u : f(x) ≥ f(x̄) + 〈u, x− x̄〉 for all x}.

Namely, for v ∈ ∂f(x̄), we must have that f(x) ≥ f(x̄) + 〈v, x〉 − 〈v, x̄〉 for all x. Rearranging the

terms gives

〈v, x̄〉 − f(x̄) ≥ 〈v, x〉 − f(x) for all x,

which holds with equality for x = x̄. Therefore,

〈v, x̄〉 − f(x̄) = sup
x
{〈v, x〉 − f(x)} = f∗(v). (2)

Hence, we conclude that v ∈ ∂f(x̄) if and only if x̄ is an element of the set argmaxx{〈v, x〉−f(x)}
in defining f∗(v), c.f., (2). Using this observation, (1) holds if and only if, for t ∈ [0, T ],

(z(t),Θ(t), ζ(t), ż(t), Θ̇(t), ζ̇(t)) ∈ argmax
x,y

{(ṗ(t), p(t)) · (x, y)− L(t, x, y)}. (3)

By Proposition 6, (3) is equivalent to having

żi(t) =
[pzi + ri(t)p

ζ
i + vi(t)− ci(t)]

+

ηsi
for i = 1, 2. (4)

Θ̇i(t) =
[pΘi − r̃i(t)p

Θ
i + c̃i(t)− ṽi(t)]

+

ηli
for i = 1, 2. (5)

ζ̇i(t) = ri(t)żi(t)− r̃i(t)Θ̇i(t), for i = 1, 2.

Also, note by equivalence of the formulations (60)-(65) and (D) that

pzi = K(1− q), pζi = q and pΘi = 0 for i = 1, 2.

Similarly, by the equivalence of (40)-(46) and (P) we have that

α(t) = ż(t) and θ(t) = Θ̇(t) for t ∈ [0, T ].
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Therefore, (4)-(5) give the hospice manager’s optimal recruiting and live-discharge rates as stated

in the theorem, where q∗ is the optimal solution to the dual problem, characterized in Proposition

7.

Proof of Proposition 4. Let α(·) and θ(·) denote a feasible nonstationary policy. Then let

ᾱi =
1

T

∫ T

0
αi(s)ds and θ̄i =

1

T

∫ T

0
θi(s)ds,

and observe that for i = 1, 2,

∫ T

0

1

T
si(αi(t))dt > si

(

∫ T

0

1

T
αi(t)dt

)

= si(ᾱi) (6)

∫ T

0

1

T
gi(θi(t))dt > gi

(

∫ T

0

1

T
θi(t)dt

)

= gi(θ̄i) (7)

by Jensen’s inequality and strict convexity of the quadratic recruiting and live-discharging cost

functions si(·) and gi(·). Multiplying both sides of (6)-(7) by T gives

∫ T

0
si(αi(t))dt > Tsi(ᾱi) and

∫ T

0
gi(θi(t))dt > Tgi(θ̄i)

so that the recruiting and live-discharge costs are strictly larger for the nonstationary policy α(·)
and θ(·) than its stationary counterpart ᾱ and θ̄, while all other costs and the revenues are the

same for the two policies. Thus, switching over to the stationary policy (ᾱ, θ̄) strictly improves the

hospice’s profit.

Proof of Lemma 1. For notational simplicity, let

a =
2
∑

i=1

(rmi −K)

[

λi +
(r − ci)mi

ηsi

]

and b =
2
∑

i=1

(rmi −K)2

ηsi
.

(i) Note that π1 < c2/r is equivalent to

br +
2
∑

i=1

(rm̃i)
2

ηli
ci − ra < c2b+ c2

2
∑

i=1

(rm̃i)
2

ηli
. (8)

Subtracting c2(rm̃2)
2/ηl2 from both sides of (8) shows that (8) is equivalent to

br +
(rm̃1)

2

ηl1
c1 − ra < c2b+ c2

(rm̃1)
2

ηl1
, (9)

which, in turn, is equivalent to π2 < c2/r.
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(ii) Because π1 < c2/r is equivalent to (9), it follows from π1 < c2/r and c1 > c2 that

br +
(rm̃1)

2

ηl1
c1 − ra < c2b+

c2(rm̃1)
2

ηl1
< c1b+ c1

(rm̃1)
2

ηl1
,

which implies π3 < c1/r.

(iii) Note that π2 < c1/r is equivalent to

br +
(rm̃1)

2

ηl1
c1 − ra < bc1 +

c1(rm̃1)
2

ηl1
,

which clearly is equivalent to π3 < c1/r.

Proof of Proposition 5. We can make the hospice manager’s optimization problem convex and

put it in the form of Boyd and Vandenberghe (2004) as follows:

min−ξ +
2
∑

i=1

cimiαi −
2
∑

i=1

cim̃iθi +
2
∑

i=1

1

2
ηsiα

2
i +

2
∑

i=1

1

2
ηliθ

2
i

subject to ξ −K
2
∑

i=1

(λi + αi) ≤ 0,

ξ − r
2
∑

i=1

[mi(λi + αi)− m̃iθi] ≤ 0,

−αi ≤ 0, i = 1, 2.

−θi ≤ 0, i = 1, 2.

Letting µi, ν
s
i , ν

l
i for i = 1, 2 denote the Lagrange multipliers, we write the KKT conditions as

follows (see p. 243 of Boyd and Vandenberghe, 2004). First consider setting the gradient of the

Lagrangian to zero, which gives

−1 + µ1 + µ2 = 0,

cimi + ηsiαi −Kµ1 − rmiµ2 − νsi = 0, i = 1, 2

−cim̃i + ηliθi + rm̃iµ2 − νli = 0, i = 1, 2.

That is,

αi =
Kµ1 + rmiµ2 + νsi − cimi

ηsi
, (10)

θi =
−rm̃iµ2 + νli + cim̃i

ηli
, (11)

µ1 + µ2 = 1. (12)

7



Also, the feasibility and complementary slackness conditions give the following:

ξ −K
2
∑

i=1

(λi + αi) ≤ 0, (13)

ξ − r
2
∑

i=1

[mi(λi + αi)− m̃iθi] ≤ 0, (14)

αi ≥ 0, (15)

θi ≥ 0, (16)

µ1

[

ξ −K
2
∑

i=1

(αi + λi)

]

= 0, (17)

µ2

[

ξ − r
2
∑

i=1

[mi(αi + λi)− m̃iθi]

]

= 0, (18)

νsi αi = 0, i = 1, 2 (19)

νliθi = 0, i = 1, 2 (20)

µi ≥ 0, i = 1, 2 (21)

νji ≥ 0 i = 1, 2, j = s, l. (22)

Then equations (10)-(22) will pin down the optimal solution.

Recall that K > cimi for i = 1, 2 by assumption. Then it is easy to see that αi > 0 for i = 1, 2.

Otherwise, by (10), αi = 0 implies

νsi = mi[ci − (µ2r + (1− µ2)K/m1] < 0,

which contradicts (22). Therefore, in what follows we assume αi > 0 for i = 1, 2, which, in turn,

implies by (19) that

νsi = 0 for i = 1, 2. (23)

Despite this simplification, we still need to consider several cases. First, note that at least one

of the inequalities (13) and (14) will bind. Therefore, we have the following three main cases to

consider:

• Case 1: Constraint (13) does not bind.

• Case 2: Constraint (14) does not bind.

• Case 3: Both (13) and (14) bind.

Consider Case 1: Because the cap constraint, c.f. (13), does not bind, one would expect that the

hospice manager recruits patients and does not live-discharge any, i.e. θi = 0 for i = 1, 2. Indeed,
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to see this note that µ1 = 0 and µ2 = 1 by (17) and (12). Also, if θi > 0, then νli = 0 by (20). Then

by (11), θi = m̃i(ci − r)/ηli < 0, which contradicts (16). Therefore, in case 1, we must have θi = 0

for i = 1, 2. More specifically, because µ1 = 0 and µ2 = 1, we conclude from (10) and (23) that

αi =
mi(r − ci)

ηsi
and θi = 0 for i = 1, 2. (24)

To conclude the part 1 of the proof, we note that case 1 arises if and only if (13) does not bind,

but (14) does:

ξ < K
2
∑

i=1

(λi + αi) and ξ = r
2
∑

i=1

[mi(λi + αi)− m̃iθi] .

That is,

r
2
∑

i=1

[mi(λi + αi)− m̃iθi] < K
2
∑

i=1

(λi + αi).

Substituting (24) and rearranging terms gives the following equivalent condition:

2
∑

i=1

(rmi −K)

[

λi +
mi(r − ci)

ηsi

]

< 0 (25)

which along with (24) prove part 1 of Proposition 5.

Next, consider case 2: constraint (14) does not bind. That is, the cap constraint binds and

the potential revenue constraint does not. In this case, one would expect the hospice manager to

both recruit patients (to relax the cap constraint) and to live-discharge patients to reduce costs.

In other words, we expect to see θi > 0 for i = 1, 2. Indeed, to see this note that by (18) and (12),

µ1 = 1, µ2 = 0. Then it follows from (11) that θi ≥ cim̃i/η
l
i > 0 for i = 1, 2. Therefore, we must

have θi > 0 for i = 1, 2 in case 2.

To be more specific, θi > 0 implies νli = 0 by (20). Then, it follows from (10)-(11) and (23) that

αi =
K − cimi

ηsi
and θi =

cim̃i

ηli
for i = 1, 2. (26)

Moreover, observe that case 2 arises if and only if

ξ = K
2
∑

i=1

(λi + αi) and ξ < r
2
∑

i=1

[mi(λi + αi)− m̃iθi] .

That is,

K
2
∑

i=1

(λi + αi) < r
2
∑

i=1

[mi(λi + αi)− m̃iθi] .

Substituting (26) into this and rearranging terms shows that case 2 arises if and only if

2
∑

i=1

r(m̃i)
2ci

ηli
+

2
∑

i=1

(rmi −K)

ηsi
<

2
∑

i=1

(rmi −K)

[

λi +
mi(r − ci)

ηsi

]

, (27)

9



which along with (26) proves part 2 of Proposition 5.

Finally, consider case 3, where both (13) and (14) bind. As a first step, we rule out the case

θ1 = 0 and θ2 > 0. Suppose that this is possible. Then by (20), θ2 > 0 implies νl2 = 0, and by

(11) we write θ2 = m̃2(c2 − µ2r)/η
l
2, which in turn implies µ2 < c2/r because θ2 > 0. At the same

time, θ1 = 0 implies by (11) that µ2 = νl2/(rm̃1) + c1/r ≥ c1/r. Thus, we conclude both µ2 ≥ c1/r

and µ2 < c1/r, which is a contradiction because c1 > c2. Next, we consider the following three

subcases, each of which may arise:

Case 3a: θi > 0 for i = 1, 2.

Case 3b: θ1 > 0 and θ2 = 0.

Case 3c: θi = 0 for i = 1, 2.

Consider Case 3a: θi > 0 implies νli = 0 for i = 1, 2 by (20). Then it follows from (10)-(11) and

(23) that

αi =
K(1− µ2) + rmiµ2 − cimi

ηsi
and θi =

m̃i(ci − rµ2)

ηli
for i = 1, 2. (28)

Because we must have θi > 0, (28) requires that

µ2 <
c2
r
<
c1
r
. (29)

Moreover, because both (13) and (14) bind, we must have that

K
2
∑

i=1

(αi + λi) = r
2
∑

i=1

[mi(λi + αi)− m̃iθi]. (30)

Substituting µ1 = 1− µ2 and (27) into (30) and rearranging terms give

µ2 = π1. (31)

Consider Case 3b: θ1 > 0 implies that νl1 = 0. Moreover, θ2 = 0 implies by (11) that νl2 =

m̃2(rµ2 − c2) ≥ 0, which requires µ2 ≥ c2/r. Also, θ1 > 0 requires µ2 < c1/r by (10). So we must

have
c2
r

≤ µ2 <
c1
r
. (32)

Also, it follows from (10)-(11) and (23) that

αi =
K(1− µ2) + rmiµ2 − cimi

ηsi
for i = 1, 2 and θ1 =

m̃1(c1 − rµ2)

ηl1
. (33)
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Because both (13) and (14) bind, (30) must hold. Then using (33) and the fact that θ2 = 0, we

find that

µ2 = π2. (34)

Finally, consider Case 3c: θ2 = 0 for i = 1, 2. Note that θi = 0 implies by (11) that νli =

m̃i[rµ2 − ci], which, in turn, implies µ2 ≥ ci/r. That is, we must have

µ2 ≥
c1
r
>
c2
r
. (35)

Moreover, it follows from (10) and (23) that

αi =
K(1− µ2) + rmiµ2 − cimi

ηsi
for i = 1, 2. (36)

Because both (13) and (14) bind, using (35) and the fact that θi = 0 for i = 1, 2, one can show that

µ2 = π3. (37)

To conclude the proof, note by Lemma 1 that the conditions (29) and (31), (32) and (34), and

(35) and (37) partition the remaining subcases of case 3 above (over the parameter space of the

problem) as in Part 3 of Proposition 5. Combining this partition and characterizations of recruiting

and live-discharge rates in (28), (33), and (36) proves Part 3 of Proposition 5.

B Duality Analysis

In this appendix, we derive the dual formulation and some auxiliary results. To facilitate the

statement of the dual formulation, let

β1 = K(λ1 + λ2)T (38)

β2 =
2
∑

i=1

∫ T

0
λiri(s)ds+R(0) (39)

It will be shown below that the dual formulation (D) of (P) can be stated as follows: Choose q so

as to

minβ1(1− q) + β2q +
∑2

i=1

∫ T
0

1
2ηs

i
([K(1− q) + ri(t)q + vi(t)− ci(t)]

+)
2
dt

+
∑2

i=1

∫ T
0

1
2ηl

i

([−r̃i(t)q − ṽi(t) + c̃i(t)]
+)

2
dt

subject to 0 ≤ q ≤ 1.

(D)

This appendix proves this statement and (in Proposition 7) provides the optimal solution to this

dual formulation.
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For i = 1, 2 and t ∈ [0, T ], let

zi(t) =

∫ t

0
αi(s)ds and Θi(t) =

∫ t

0
θi(s)ds

(in particular, żi(s) = αi(s) and Θ̇i(s) = θi(s)). That is, zi(t) and Θi(t) denote the cumulative

number of recruited and live-discharged, respectively, patients by time t. Observe that the hospice

manager’s problem (P) can be written as follows: Choose ż(·), Θ̇(·) and ζ̇(·) so as to

min{−min(β1 +Kz1(T ) +Kz2(T ), β2 + ζ1(T ) + ζ2(T ))}+
∫ T

0

2
∑

i=1

[(ci(t)− vi(t))żi(t) + si(żi(t))]dt

−
∫ T

0

2
∑

i=1

[(c̃i(t)− ṽi(t))Θ̇i(t)− gi(Θ̇i(t))]dt (40)

subject to

zi(t) = zi(0) +

∫ t

0
żi(s)ds, zi(0) = 0, (41)

ζi(t) = ζi(0) +

∫ t

0
ζ̇i(s)ds, ζi(0) = 0, (42)

Θi(t) = Θi(0) +

∫ t

0
Θ̇i(s)ds,Θi(0) = 0, (43)

żi(s) ≥ 0, (44)

Θ̇i(s) ≥ 0, (45)

ζ̇i(s) = ri(s)żi(s)− r̃i(s)Θ̇i(s). (46)

The cumulative revenue accrued until time t from patients of type i is ζi(t) and ζ̇i(t) is the

revenue rate at time t from patients of type i. To put this in the framework of Rockafellar (1970),

define

L(t, x, y) =
2
∑

i=1

[(ci(t)− vi(t))y
z
i + si(y

z
i ) + χ{yz

i
≥0}] (47)

+
2
∑

i=1

[−(c̃i(t)− ṽi(t))y
Θ
i + gi(y

Θ
i ) + χ{yΘ

i
≥0}] +

2
∑

i=1

χ{yζ
i
=ri(t)yzi −r̃i(t)yΘi }], (48)

l(x, y) = χ{xz=0,xΘ=0,xζ=0} −min{β1 +Kyz1 +Kyz2 , β2 + yζ1 + yζ2} (49)

for xi = (xzi , x
Θ
i , x

ζ
i ) ∈ <3, x = (x1, x2) ∈ <6, yi = (yzi , y

Θ
i , y

ζ
i ) ∈ <3, y = (y1, y2) ∈ <6, and

xj = (xj1, x
j
2), y

j = (yj1, x
j
2) ∈ <2 for j = z,Θ, ζ, and χF (·) is an “indicator” function taking values

zero or infinity. Namely,

χF (a) =











∞ if a 6∈ F,

0 otherwise.

12



Notice L(t, x, y) is independent of x because the profit function is independent of the cumulative

number of recruited patients and cumulative revenue within the year; the cumulative number of

patients and cumulative revenue is relevant only at time T which are represented by y in l(x, y).

Then the hospice manager’s problem can be written as follows: Choose the functions ż(·), Θ̇(·), ζ̇(·)
so as to

min l((z(0),Θ(0), ζ(0)), (z(T ),Θ(T ), ζ(T ))) +

∫ T

0
L(t, (z(t),Θ(t), ζ(t)), (ż(t), Θ̇(t), ζ̇(t)))dt. (50)

Following Rockafellar (1970) to derive the dual problem,1 define

m(d(0), d(T )) = l∗(d(0),−d(T )), (51)

M(t, p, s) = L∗(t, s, p), (52)

where l∗ and L∗ are convex conjugates of l and L, respectively, m is the terminal function dual to

l, M is the Lagrangian function dual to L, and d(t) = (dz(t), dζ(t)) ∈ <6. The dual problem can

then be stated as follows: Choose p(·) and ṗ(·) so as to

minm(p(0), p(T )) +

∫ T

0
M(t, p(t), ṗ(t))dt. (53)

The next step is to characterize m,M which is done in the next proposition.

Proposition 6 We have that

m(dz(0), dΘ(0), dζ(0), dz(T ), dΘ(T ), dζ(T )) = β1d
z
1(T )/K + β2d

ζ
1(T ) + χ{dj1(T )=dj2(T ),j=z,ζ}

+χ{dz1(T )+Kdζ2(T )=1} + χ{dj
i
(T )≥0,i=1,2,j=z,ζ} + χ{dΘ(T )=0}, (54)

M(t, p, s) =
2
∑

i=1

1

2ηsi
([pzi + ri(t)p

ζ
i + vi(t)− ci(t)]

+)2 + χ{s≡0}

+
2
∑

i=1

1

2ηli
([pΘi − r̃i(t)p

ζ
i − ṽi(t) + c̃i(t)]

+)2. (55)

Moreover,

argmax
x,y

{(s, p) · (x, y)− L(t, x, y)} =























(x, y) :

yzi =
[pz

i
+ri(t)p

ζ
i
+vi(t)−ci(t)]

+

ηs
i

,

yΘi =
[pΘ

i
−r̃i(t)p

Θ
i
−ṽi(t)+c̃i(t)]

+

ηl
i

, and

yζi = ri(t)y
z
i − r̃i(t)y

Θ
i























. (56)

1Here we are following Rockafellar’s (1970) notation as closely as possible to facilitate the use of his results. For

example, the swapping of the order of arguments in M and L
∗ in (52) matches his equation (5.5) on p. 190.
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Proof. Note that

m(dz(0), dΘ(0), dζ(0), dz(T ), dΘ(T ), dζ(T )) = l∗(dz(0), dΘ(0), dζ(0),−dz(T ),−dΘ(T ),−dζ(T ))

= sup
c
{c(0)d(0)− c(T )d(T )− χ{c(0)=0}

+min{β1 +Kcz1(T ) +Kcz2(T ), β2 + cζ1(T ) + cζ2(T )}}

= sup
c(T )

{−cz(T )dz(T )− cζ(T )dζ(T )− cΘ(T )dΘ(T )

+min{β1 +Kcz1(T ) +Kcz2(T ), β2 + cζ1(T ) + cζ2(T )}}

= χ{dΘ(T )=0} + sup
c(T )

{−cz(T )dz(T )− cζ(T )dζ(T )

+min{β1 +Kcz1(T ) +Kcz2(T ), β2 + cζ1(T ) + cζ2(T )}}.

The optimization problem on the right-hand side is equivalent to the following linear program:

max
c(T )

{

ξ − cz1(T )d
z
1(T )− cz2(T )d

z
2(T )− cζ1(T )d

ζ
1(T )− cζ2(T )d

ζ
2(T )

}

subject to

ξ ≤ β1 +Kcz1(T ) +Kcz2(T ),

ξ ≤ β2 + cζ1(T ) + cζ2(T ).

The dual linear program is given by

minβ1y1 + β2y2

subject to


























−K 0

−K 0

0 −1

0 −1

1 1

































y1

y2






=



























−dz1(T )
−dz2(T )
−dζ1(T )
−dζ2(T )

1



























,

y ≥ 0,

whose constraints are equivalent to the following:

dj1(T ) = dj2(T ) for j = z, ζ,

dz1(T )/K + dζ1(T ) = 1,

dji (T ) ≥ 0 for i = 1, 2, j = z, ζ.
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Moreover, its objective is given by β1d
z
1(T )/K + β2d

ζ
1(T ), from which (54) follows.

Similarly,

M(t, p, s) = L∗(t, s, p),

where

L∗(t, s, p) = sup
x,y

{(s, p) · (x, y)− L(t, x, y)}

= sup
xz ,xΘ,xζ ,yz ,yΘ,yζ

{

xz1s
z
1 + xz2s

z
2 + xζ1s

ζ
1 + xζ2s

ζ
2 + yz1p

z
1 + yz2p

z
2 + yζ1p

ζ
1 + yζ2p

ζ
2

−
2
∑

i=1

[(ci(t)− vi(t))y
z
i +

1

2
ηsi (y

z
i )

2]

+
2
∑

i=1

[(c̃i(t)− ṽi(t))y
Θ
i − 1

2
ηli(y

Θ
i )

2] : yzi ≥ 0, yΘi ≥ 0, yζi = ri(t)y
z
i − r̃i(t)y

Θ
i

}

.

It is clear that we must have s ≡ 0 (and that xz, xζ can take any value). Then

L∗(t, s, p) = χ{s=0} + sup
yz ,yΘ

{

yz1p
z
1 + yz2p

z
2 + yΘ1 p

Θ
1 + yΘ2 p

Θ
2 + (r1(t)y

z
1 − r̃1(t)y

Θ
1 )p

ζ
1

+(r2(t)y
z
2 − r̃2(t)y

Θ
2 )p

ζ
2 −

2
∑

i=1

[(ci(t)− vi(t))y
z
i +

1

2
ηsi (y

z
i )

2]

+
2
∑

i=1

[(c̃i(t)− ṽi(t))y
Θ
i − 1

2
ηli(y

Θ
i )

2] : yzi , y
Θ
i ≥ 0

}

,

where we substituted yζi = ri(t)y
z
i −r̃i(t)yΘi . Notice that the optimization problem on the right-hand

side decomposes so that

L∗(t, s, p) = χ{s=0} +
2
∑

i=1

sup
yz
i

{

yzi (p
z
i + ri(t)p

ζ
i − ci(t) + vi(t))−

1

2
ηsi (y

z
i )

2 : yzi ≥ 0

}

+
2
∑

i=1

sup
yΘ
i

{

yΘi (p
Θ
i − r̃i(t)p

ζ
i + c̃i(t)− ṽi(t))−

1

2
ηli(y

Θ
i )

2 : yΘi ≥ 0

}

. (57)

Then the first order conditions give

yzi =
[pzi + ri(t)p

ζ
i + vi(t)− ci(t)]

+

ηsi
, (58)

yΘi =
[pΘi − r̃i(t)p

ζ
i − ṽi(t) + c̃i(t)]

+

ηli
. (59)

Substituting these into (57) and using the definitionM(t, p, s) = L∗(t, s, p) gives (55). Moreover,

(56) follows from (58)-(59), and the fact that yζi = ri(t)y
z
i − r̃i(t)y

Θ
i and that x can take any value

because s ≡ 0.
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Then combining Proposition 6 with (53) gives the dual formulation: Choose p(·), ṗ(·) so as to

minβ1p
z
1(T )/K + β2p

ζ
1(T ) +

2
∑

i=1

∫ T

0

1

2ηsi
([pzi (t) + ri(t)p

ζ
i (t) + vi(t)− ci(t)]

+)2dt

+
2
∑

i=1

∫ T

0

1

2ηli
([pΘi (t)− r̃i(t)p

ζ
i (t)− ṽi(t) + c̃i(t)]

+)2dt (60)

subject to

pj1(T ) = pj2(T ) for j = z, ζ, (61)

pz1(T ) +Kpζ1(T ) = K, (62)

pji (T ) ≥ 0 for i = 1, 2, j = z, ζ, (63)

pΘi (T ) = 0 for i = 1, 2. (64)

ṗi(t) = 0 for i = 1, 2 and t ≥ 0. (65)

Note that p(t) = p(T ) for all t ∈ [0, T ] because ṗ(t) = 0. Then letting q = pζ1(T ), using the

constraint that pz1(T ) +Kpζ1(T ) = K, the hospice manager’s problem reduces to

minβ1(1− q) + β2q +
2
∑

i=1

∫ T

0

1

2ηsi

(

[K(1− q) + ri(t)q + vi(t)− ci(t)]
+)2 dt

+
2
∑

i=1

∫ T

0

1

2ηli

(

[−r̃i(t)q − ṽi(t) + c̃i(t)]
+)2 dt

subject to 0 ≤ q ≤ 1.

Proposition 7 The optimal solution q∗ of the dual formulation is given as follows:

q∗ =























0 if F (0) ≥ 0,

F−1(0) if F (0) < 0 < F (1),

1 if F (1) ≤ 0,

. (66)

.

Proof. Letting

G(q) = β1(1− q) + β2q +
2
∑

i=1

∫ T

0

1

2ηsi

(

[K(1− q) + ri(t)q + vi(t)− ci(t)]
+)2 dt

+
2
∑

i=1

∫ T

0

1

2ηli

(

[−r̃i(t)q − ṽi(t) + c̃i(t)]
+)2 dt,

the dual formulation can be written as follows:

minG(q) subject to 0 ≤ q ≤ 1. (67)
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Adopting the trigger functions constructed for the proof of Proposition 3, we can write

G(q) = β1(1− q) + β2q +
2
∑

i=1

N
∑

j=1

∫ t̄ij(q)

tij(q)

1

2ηsi
(K(1− q) + ri(t)q + vi(t)− ci(t))

2 dt

+
2
∑

i=1

N
∑

j=1

∫ τ̄ij(q)

τ ij(q)

1

2ηli
(−r̃i(t)q − ṽi(t) + c̃i(t))

2 dt,

from which it is straightforward to show that G′ = F . This in turn yields G′′(q) = F ′(q) > 0

for all q. Hence, G is strictly convex and the first order conditions are sufficient to pin down the

unique optimal solution. Moreover, because F is strictly increasing, it follows that if F (0) ≥ 0,

then q∗ = 0; and if F (1) ≤ 0, then q∗ = 1. Otherwise, we have an interior solution characterized

by F (q) = 0, which yields q∗ = F−1(0).

C Heuristic for the Simulation

This appendix describes the heuristic implemented in the simulation study. We wish to determine

the total recruiting for type i (which will divided proportionally between types a and b) and the

live-discharge rate for type i, b, for i = 1, 2. From the fluid model we can calculate rmi (j), cmi (j),

and vmi (j) for i = 1, 2, m = a, b, and 1 ≤ j ≤ 365. Further, we define average class revenues and

terminal values as r̂i(j) = γai r
a
i (j) + γbi r

b
i (j) and v̂i(j) = γai v

a
i (j) + γbi v

b
i (j) (recall that γai is the

proportion of type a arrivals to class i and γbi = 1− γai ).

Suppose that the current day is the start of day j, 1 ≤ j ≤ 365. Define R(j) as the potential

revenue earned thus far up to day j and let ni(j) be the patients admitted thus far of type i = 1, 2.

For k = j, . . . , 365, let xki be the recruiting rate for class i in period k and yki the live-discharge rate

for class i, b, for i = 1, 2. Then we estimate cumulative potential revenue for the year as

R = R(j) +
2
∑

i=1

365
∑

k=j

[(λi + xki )r̂i(k)−
2
∑

i=1

365
∑

k=j

[rbi (k)y
k
i ].

We estimate the cumulative cap for the year as

CAP = K
2
∑

i=1



ni(j) +
365
∑

k=j

(λi + xki )



 .

Our mathematical program is to:

max







min(R,CAP ) +
2
∑

i=1

365
∑

k=j

(

(v̂i(k)− ĉi(k))(λi + xki )− (vbi (k)− cbi(k))y
k
i

)

−
2
∑

i=1

si(x
k
i )−

2
∑

i=1

gi(y
k
i )

}

(68)
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subject to xki ≥ 0, yki ≥ 0, i = 1, 2.

This optimization can be solved analogously to that in Proposition 5 and pseudo-code for the

heuristic is given below. First define:

DayNumber as the index of the current day.

NatArrival[DayNumber] as the expected revenue from natural arrivals from day DayNumber to

the end of the year.

patientlist[i]->length as the number of patients of type i currently in the system.

wm
i (j) = rmi (j)− cmi (j) + vmi (j) and ŵi(j) = γai w

a
i (j) + γbiw

b
i (j)

Item[i].Eta = ηsi Item[i].EtaDis = ηli HeurDenomPart1[j]=
∑356

k=j(r̂i(j)−CAP )2/ηsi
HeurNumerPart1[j]=

∑356
k=j ŵi(j)(r̂i(j)− CAP )/ηsi

HeurDenomPart2a[j]=
∑356

k=j(r
b
1(j))

2/ηl1

HeurNumerPart2a[j]=
∑356

k=j(w
b
1(j)r

b
1(j))/η

l
1

HeurDenomPart2b[j]=
∑356

k=j(r
b
2(j))

2/ηl2

HeurNumerPart2b[j]=
∑356

k=j ŵ2(j)(r̂2(j)− CAP )/ηs2 + (wb
i (j)r

b
i (j))/η

l
i

Then the discharge and recruiting rates are calculated using the following pseudo-code:

EstRev = YearsRevenue+NatArrival[DayNumber];

for (i=0; i<4; ++i) EstRev += r[i][DayNumber]*(patientlist[i]->length);

CapMiss = EstRev-CAP*NumAdmitTotal;

lagrange1 = -(CapMiss + HeurNumerPart1[DayNumber]+HeurNumerPart2a[DayNumber]

+HeurNumerPart2b[DayNumber])/(HeurDenomPart1[DayNumber]

+HeurDenomPart2a[DayNumber]+HeurDenomPart2b[DayNumber]);

lagrange2 = -(CapMiss + HeurNumerPart1[DayNumber]+HeurNumerPart2a[DayNumber])/

(HeurDenomPart1[DayNumber]+HeurDenomPart2a[DayNumber]);

for (class=0;class<2;++class)

if ((CapMiss+HeurNumerPart1[DayNumber] > 0)&&(lagrange1>-1))

if (lagrange1<((c[1]-v[1])/r-1))

recruit = (lagrange1*(r̂[class][DayNumber]-CAP) + ŵ[class][DayNumber])/(Item[class].Eta);

discharge = (-lagrange1*r[class+2][DayNumber]- w[class+2][DayNumber])/(Item[class].EtaDis);

else if (lagrange2<((c[0]-v[0])/r-1))

recruit = (lagrange2*(r̂[class][DayNumber]-CAP) + ŵ[class][DayNumber])/(Item[class].Eta);

if (class==0)
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discharge = (-lagrange2*r[class+2][DayNumber]- w[class+2][DayNumber])/

(Item[class].EtaDis);

else discharge =0;

else

lagrange3 = -(CapMiss + HeurNumerPart1[DayNumber])/(HeurDenomPart1[DayNumber]);

recruit = (lagrange3*(r̂[class][DayNumber]-CAP) + ŵ[class][DayNumber])/(Item[class].Eta);

discharge = 0;

else if ((CapMiss+HeurNumerPart1[DayNumber] > 0)&&(lagrange1<=-1))

recruit = (CAP+ŵ[class][DayNumber]-r̂[class][DayNumber])/(Item[class].Eta);

discharge = (r[class+2][DayNumber]- w[class+2][DayNumber])/(Item[class].EtaDis);

else

recruit = ŵ[class][DayNumber])/(Item[class].Eta);

discharge = 0;

RecruitingRate[i] = recruit;

DischargeRate[i] = discharge;

We also create an equivalent heuristic for the legacy policy. This is done by setting the values

in (68) and the associated code as follows: rmi (j) = rmj
i , c

m
i (j) = cmj

i , and v
m
i (j) = 0 for i = 1, 2,

m = a, b,

Recall that ψ yields terminal values vji = (ψr − ci)m
j
i , i = 1, 2 and j = a, b. We estimate a

base-case for ψ by using a steady-state version of the simulation. We assume that ψ is uniform

across all patient classes and is calculated as the estimated fraction of revenue for patients that

end one year that will be of use the following year. In order to calculate this, at the end of each

year we calculate if there was potential reimbursement left unused at the end of the year, and if

so let ψ = 1. Otherwise, we calculate the extra revenue received this year (including from patients

who were here at the start) that went unreimbursed and let ψ equal the ratio of that unreimbursed

amount to total revenue.

To be specific, terminal values are estimated as follows (note that this calculation only makes

sense in a steady-state world). At the end of the year we calculate:

• CapMiss = YearsRevenue-CAP*NumAdmitTotal (this is the extra revenue received THIS year

(including from patients who were here at the start) that went to waste or, if negative, the

amount under the CAP that we ended the year with);
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• EstRev is the projected revenue to be received by the patients left at the end of the year

(using their actual death times, although that won’t be available to a planner), with each

class contributing QueueRev[i];

• QueueCost[i] is the projected cost to be incurred by the patients left at the end of the year

from class i

Finally, fracallocate is calculated as the estimated fraction of revenue for patients that end one

year that will be of use the following year (using this year’s value of CapMiss) so that

If CapMiss ≤ 0 then fracallocate=1; else

if CapMiss-EstRev ≥ 0 then fracallocate=0; else

fracallocate = CapMiss/EstRev.

The estimated terminal value for class i is then

(fracallocate*QueueRev[i]-QueueCost[i])/NumPatients[i]

where NumPatients[i] is the number of class i left at the end of the year and fracallocate

becomes our estimate for ψ. Using the base case parameter values, this yields an estimated ψ of

0.15.

Because the number of customers left at the end of the year, and hence the calculated terminal

values, is likely to be quite variable we update the terminal values using an exponential smoothing

type algorithm. In particular, if ALPHA is the exponential smoothing parameter (set equal to 0.1 in

our tests) then we calculate the new terminal value as

ALPHA*(fracallocate*QueueRev[i]-QueueCost[i])/NumPatients[i]+(1-ALPHA)*Terminal[i]

where Terminal[i] is the previous terminal value for class i patients.
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