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Appendix A: Symbols Used

∇(γ, i) = π(γ)−π(γ	 i) for i∈Uγ where γ ∈ Γ, the production value of supplier i in state γ
⊕,	 operators that map a state-unaudited-supplier pair to a state; used in defining

dynamic program
a cost of auditing a supplier
a, b tier-1 firms
α,β parameters of the demand function from customers downstream to the buyer
c the buyer
Ci strategy space of firm i
Dg(i) set of dependents of supplier i in supply network g
ea, eb an exclusive supplier to firm a and that to firm b, used in notation for ad and ar

decisions
g supply network
g∅ the null supply network
γ = (g,U) state in the auditing phase
Γ state space of the auditing phase
ΓT set of terminal states
p(0) selling price of buyer
p(1) selling price of tier-1 firms to the buyer
p(2)i selling price of tier-2 suppliers to tier-1 firm i
π(γ) buyer’s production profit in state γ
πi profit of firm i from production activity
qi total quantity produced by firm i
r cost of rectifying a noncompliant supplier
R+(γ) set of states reachable from state γ
sj,i quantity supplier j produces for downstream firm i
s a shared supplier, used in notation for ad and ar decisions
Sa, Sb set of exclusive suppliers to tier-1 firm a and that to firm b
Sab set of shared suppliers
Sg set of suppliers in supply network g
S(k) set of suppliers in tier k= 1,2
u probability that an unaudited supplier is noncompliant
Uγ set of unaudited suppliers in state γ

U union of sets of unaudited suppliers in any state in Γ
V value function in auditing phase
V ∗ optimal value function in auditing phase

Ṽ state value function in auditing phase

Ṽ ∗ optimal state value function in auditing phase
vk unit production cost in tier k
vT sum of production costs per unit across tiers
w probability that violation at a supplier will be exposed, given that it is noncompliant
Xγ set of admissible actions at state γ

X union of sets of admissible actions in any state in Γ
ξ auditing policy
Ξ set of all auditing policies
z cost to the buyer of an exposed violation
Z set of state-unaudited-supplier pairs
ζ(γ) expected total penalty from violations on state γ

Appendix B: Effect of Probability of Noncompliance

What is the role of the ex ante probability of noncompliance u in the auditing activity and the level of

risk in the supply network resulting from the auditing phase? We consider a state with supply network

g = ({a,b},{1,2},{4},{3}) (as in Figure 1) in which all suppliers are unaudited, with values of parameters
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Figure B.1 Auditing and Risk as Probability of Noncompliance Varies

(a) Expected Number of Suppliers Audited
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(b) Probability of Exposure in Production Phase
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State γ = (g,U) where g= ({a,b},{1,2},{4},{3}) (Figure 1) and U = Sg. Parameters α= 100, β = 10, vT = 2, a= 1,

r= 20, w= 0.5. (In the left panel, the graph for z = 12 coincides with the horizontal axis.)

α= 100, β = 10, vT = 2, a= 1, r = 20, and w = 0.5. Figure B.1a shows the expected number of suppliers to

be audited throughout the auditing phase as u increases from 0 to 1 for various values of penalty z; this

expectation is taken over all possible sample paths of whether any supplier passes or fails an audit under

the optimal auditing policy. Figure B.1b shows the corresponding expected probability of the exposure of

violation at any remaining unaudited suppliers in the supply network after the auditing phase. Given state

γ at the conclusion of the auditing phase, we calculate the probability by 1− (1− uw)|Uγ | where uw is the

probability of an unaudited supplier being noncompliant and subsequently exposed and Uγ is the set of any

unaudited suppliers at state γ (these are the only suppliers which could possibly violate in the production

phase). The set Uγ is the culmination of the path-dependent auditing process.

In Figures B.1a and B.1b, a jump from one smooth segment on a curve to the next smooth segment

represents a shift in the auditing policy. For low values of z (e.g., z 6 12) the buyer conducts no audits at all

regardless of the probability of noncompliance; the number of suppliers to be audited remains zero and the

network’s probability of exposure increases monotonically in u. With higher z the buyer starts to audit once

u reaches a threshold, which decreases as z gets larger. For example, compare the z = 22 to the z = 12 curves:

for z = 22 when u > 0.27 the buyer is sufficiently concerned about noncompliance that some auditing will

occur, resulting in a corresponding drop in the probability of exposure, relative to the z = 12 curve. Overall

as u increases the expected number of suppliers audited first shows an upward trend, reflecting the buyer’s

greater concern of the potential penalty from violation, leading to more audits. The expected number of

audited firms trends downward, however, as u increases further. With a higher probability of noncompliance

the business becomes too risky so the buyer turns to auditing the tier-1 firms directly. The buyer expects to

drop these tier-1 firms, along with their tier-2 dependents if the tier-1 firms turn out to be noncompliant,

thus avoiding the cost of conducting those tier-2 audits (highly likely to be noncompliant). As u approaches

1, the expected number of audits approaches 2, because the buyer audits firms a and b (which are very likely
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to fail the audits), thus dropping them and killing the business. Figure B.1b reflects the same effects: the

probability of exposure in the network first exhibits an overall upward trend with increasing u but eventually

falls to zero as the buyer drops both firms a and b, and consequently the entire supply network, thus avoiding

risk entirely.

Neither figure shows a generally monotonic pattern. As u increases, driven by the higher probability of

noncompliance the buyer adopts an increasingly aggressive approach to auditing, concomitantly reducing

in the probability of exposure (Figure B.1b). Ultimately, such auditing may be exhaustive (leaving no firm

unaudited) to ensure full compliance or to extinguish the business.

Appendix C: Proofs for the Production Phase

C.1. Existence and Uniqueness of Equilibrium

Proposition C.1. Given the buyer’s input price p(1), there exists a unique optimal quantity q∗c which

solves the buyer’s problem P0. Moreover, the resulting inverse demand function faced by the tier-1 firms is

p∗(1)(qc) = α− v0− 2βqc. (C.1)

Proof. Substitute (6) into (7) and differentiate to get

∂πc

∂qc
=−βqc + (α−βqc− v0− p(1)) (C.2)

∂2πc

∂q2c
=−2β. (C.3)

Since β > 0, (C.3) implies that πc is strictly concave. Hence a quantity qc maximizes πc if and only if it sets

∂πc

∂qc
= 0 in (C.2); the unique such qc is given by

q∗c =
α− v0

2β
−
p(1)
2β

. (C.4)

We rewrite it in the form of an inverse demand function to obtain (C.1). �

Proposition C.2. Given the tier-1 vector of input prices p(2) = (p(2)i)i∈S(1), there exists a unique equi-

librium in pure strategies q∗(1) of the game P1. Moreover, the resulting inverse demand function faced by the

tier-2 firms supplying firm i is (for i∈ S(1))

p∗(2)i(q(1)) = α− v0− v1− 4βqi− 2β
∑

i′∈S(1)\{i}

qi′ . (C.5)

Proof. Substitute (C.1) into (8) to get tier-1 supplier i’s profit

πi = (α− v0− 2βqc− v1− p(2)i)qi. (C.6)

Substitute (9) into (C.6) to get

πi =

α− v0− v1− p(2)i− 2β
∑
j∈S(1)

qj

 qi. (C.7)

Then

∂πi
∂qi

= α− v0− v1− p(2)i− 4βqi− 2β
∑

j∈S(1)\{i}

qj (C.8)

∂2πi
∂q2i

=−4β. (C.9)
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Given β > 0, (C.9) implies πi is strictly concave in qi. Given any other tier-1 firm’s decision, a quantity qi

maximizes πi if and only if it sets ∂πi
∂qi

= 0 in (C.8); the unique such qi is

qi =−1

2

 ∑
j∈S(1)\{i}

qj

+
α− v0− v1− p(2)i

4β
. (C.10)

Hence a strategy profile q(1) = (qi)i∈S(1) is an equilibrium of the tier-1 firms’ game P1 if and only if it solves

the system of linear equations (C.10) for all i∈ S(1).

If |S(1)|= 1, let i∈ S(1), then it is clear that q(1) = qi =
α−v0−v1−p(2)i

4β
is the unique (degenerate) equilibrium

of the game P1. If |S(1)|= 2, i.e., S(1) = {a,b}, we write the system (C.10) as[
1 1

2
1
2

1

]
q(1) =

α− v0− v1
4β

− 1

4β

[
p(2)a
p(2)b

]
. (C.11)

Clearly the matrix

[
1 1

2
1
2

1

]
is invertible; hence the system (C.10) has a unique solution, which is the unique

equilibrium of the game P1. We rewrite (C.10) in the form of an inverse demand function to obtain (C.5). �

Proposition C.3. (a) A tier-2 supplier j’s profit πj is strictly concave in sj.

(b) There exists a unique equilibrium of the game P2 of Cournot competition among tier-2 suppliers in

the first stage of the production phase.

(c) Given the inverse demand function (C.5) from tier-1 firm i that its tier-2 suppliers collectively receive,

for j ∈ Si, i∈ S(1),

∂πj(s(2))

∂sj,i
=−4βsj,i +

α− vT − 4β
∑

j′∈Si∪Sab

sj′,i− 2β
∑

i′∈S(1)\{i}

 ∑
j′∈Si′∪Sab

sj′,i′

 (C.12)

and for j ∈ Sab and i∈ S(1),

∂πj(s(2))

∂sj,i
=−4βsj,i +

α− vT − 4β
∑

j′∈Si∪Sab

sj′,i− 2β
∑

i′∈S(1)\{i}

 ∑
j′∈Si′∪Sab

sj′,i′

− 2β
∑

i′∈S(1)\{i}

sj,i′ .

(C.13)

Proof. (Part (c)). For exclusive supplier j ∈ Si, i ∈ S(1), substitute (C.5) into (11), replace v0 + v1 + v2

with vT , and then substitute (13) to get

πj =

α− vT − 4βqi− 2β
∑

i′∈S(1)\{i}

qi′

sj,i (C.14)

=

α− vT − 4β
∑

j′∈Si∪Sab

sj′,i− 2β
∑

i′∈S(1)\{i}

 ∑
j′∈Si′∪Sab

sj′,i′

sj,i. (C.15)

Differentiate (C.15) with respect to sj,i to get (C.12). For shared supplier j ∈ Sab, substitute (C.5) into (12),

replace v0 + v1 + v2 with vT , and then substitute (13) to get

πj =
∑
i∈S(1)

α− vT − 4βqi− 2β
∑

i′∈S(1)\{i}

qi′

sj,i (C.16)

=
∑
i∈S(1)

α− vT − 4β
∑

j′∈Si∪Sab

sj′,i− 2β
∑

i′∈S(1)\{i}

 ∑
j′∈Si′∪Sab

sj′,i′

sj,i. (C.17)
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Differentiate (C.17) with respect to sj,i, i∈ S(1), to get (C.13).

(Part (a)). For exclusive supplier j ∈ Si, i∈ S(1), differentiate (C.12) with respect to sj,i to get

∂2πj
∂s2j,i

=−8β. (C.18)

Therefore πj is strictly concave in sj = sj,i. For shared supplier j ∈ Sab, differentiate (C.13) with respect to

sj,i and with respect to sj,i′ for i′ ∈ S(1)\{i} to get

∂2πj
∂s2j,i

=−8β and
∂2πj

∂sj,i′∂sj,i
=−4β. (C.19)

Hence the Hessian of πj with respect to sj is

[
−8β −4β
−4β −8β

]
which, given that β > 0, can be easily verified to

be negative definite. Therefore πj is strictly concave in sj = {sj,i}i∈S(1).
(Part (b)). (Existence.) The strategy space Cj of tier-2 supplier j is a nonempty compact convex subset of

R (if j is an exclusive supplier) or R2 (if j is a shared supplier). The payoff function πj of supplier j (C.15)

(for exclusive supplier j) or (C.17) (for shared supplier j) is continuous in the strategy profile (sj)j∈S(2) and

strictly concave, hence quasi-concave, in supplier j’s own strategy sj . By Proposition 20.3 in Osborne and

Rubinstein (1994), there exists a pure-strategy equilibrium of the game among tier-2 suppliers in the first

stage.

(Uniqueness.) We use the method due to Rosen (1965). As we have seen, the strategy space Cj of supplier j

is convex, closed, and bounded. πj is continuous in the strategy profile and concave in supplier j’s strategy.

Label a tier-1 firm a and, if there is a second one, label it b. Label S(2) = {1, . . . , n}, where n = |S(2)|,
such that {1, . . . , ta} are tier-1 firm a’s exclusive suppliers, {ta + 1, . . . , ta + tab} are the shared suppliers, and

{ta + tab + 1, . . . , n} are tier-1 firm b’s exclusive suppliers (any of the subsets could be empty, but at least

S(2) is nonempty, i.e., n > 0). Let x = (sj)j∈S(2). We choose r = ιn = (1, . . . ,1)T ∈Rn as the weights for the

payoff functions in σ(x,r) in Rosen (1965). Then the pseudogradient of σ(x,r) = σ(x, ιn) is

g(x, ιn) =(
∂π1

∂s1,a
, . . . ,

∂πta
∂sta,a

,
∂πta+1

∂sta+1,a

,
∂πta+1

∂sta+1,b

, . . . ,
∂πta+tab
∂sta+tab,a

,
∂πta+tab
∂sta+tab,b

,
∂πta+tab+1

∂sta+tab+1,b

, . . . ,
∂πn
∂sn,b

)T

∈Rta+2tab+tb

(C.20)

By (C.18), (C.19), (C.15), and (C.17), the Jacobian G(x, ιn) of g(x, ιn) with respect to x is equal to

−2βΛ(ta, tb, tab), a symmetric matrix. Hence G(x, ιn) + (G(x, ιn))T =−4βΛ(ta, tb, tab), which is negative def-

inite for any x ∈
∏
j∈S(2)Cj by Lemma I.3 in Appendix I and that β > 0. By Theorem 6 in Rosen (1965),

σ(x, ιn) is diagonally strictly concave. By Theorem 2 in Rosen (1965), the equilibrium of the game among

tier-2 suppliers in the first stage of the production phase is unique. �

Proof of Theorem 1. By Proposition C.3, there exists a unique equilibrium (s∗j )j∈S(2) of the game in the

first stage among tier-2 supplier; let (p∗(2)i)i∈S(1) be the resulting selling prices of the tier-2 suppliers. Given

(p∗(2)i)i∈S(1), by Proposition C.2, there exists a unique equilibrium q∗(1) of the game in the second stage among

tier-1 firms; let p∗(1) be the resulting selling price of the tier-1 firms. Given p∗(1), by Proposition C.1, there

exists a unique optimal solution q∗c to the buyer’s problem in the first stage; let p∗(0) be the resulting selling

price of the buyer. Hence the tuple of prices and quantities
(
p∗(0), p

∗
(1), (p

∗
(2)i)i∈S(1), q

∗
c ,q

∗
(1), (s

∗
j )j∈S(2)

)
is the

unique production phase equilibrium. �
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C.2. Equilibrium Characterization

We begin with a simple relationship between the buyer’s equilibrium production quantity and profit:

Proposition C.4. The buyer’s equilibrium profit is π∗c = β · (q∗c)2.

Proof. Substitute (6) for p(0) and (C.1) for p(1) in (7). �

In equilibrium the buyer’s production profit depends only on the buyer’s quantity of production q∗c , which

is also the total quantity produced by the supply network.

The following proposition provides closed-form expressions for the equilibrium quantities. We define func-

tions L,se, ss, q :R3→R to facilitate representation of the equilibrium quantities.

L(x1, x2, x3) = 4x1 + 4x2 + 8x3 + 3x1x2 + 4x1x3 + 4x2x3 + 4x2
3 + 4 (C.21)

se(x1, x2, x3) =
1

2

α− vT
β

(
x2 + 2x3 + 2

L(x1, x2, x3)

)
(C.22)

ss(x1, x2, x3) =
1

3

α− vT
β

(
−x1 + 2x2 + 2x3 + 2

L(x1, x2, x3)

)
(C.23)

q(1)(x1, x2, x3) =
1

6

α− vT
β

(
4x2

3 + 4x1x3 + 4x2x3 + 4x3 + 6x1 + 3x1x2

L(x1, x2, x3)

)
(C.24)

q(x1, x2, x3) =
1

3

α− vT
β

(
3x1 + 3x2 + 4x3 + 4x1x3 + 4x2x3 + 3x1x2 + 4x2

3

L(x1, x2, x3)

)
. (C.25)

Proposition C.5. (a) If ta 6 2tb + 2tab + 2, in equilibrium:

i. Exclusive supplier j ∈ Si to tier-1 firm i ∈ S(1) chooses supply quantity s∗j,i = se(ti, t−i, tab) where

−i∈ {a,b}\{i};

ii. Shared supplier j ∈ Sab chooses supply quantities s∗j,a = ss(ta, tb, tab) and s∗j,b = ss(tb, ta, tab);

iii. Tier-1 firm i∈ S(1) chooses supply quantity q∗i = tise(ti, t−i, tab) + tabss(ti, t−i, tab) = q(1)(ti, t−i, tab)

where −i∈ {a,b}\{i};

iv. The total quantity the supply network produces is

q∗c = tase(ta, tb, tab) + tbse(tb, ta, tab) + tab(ss(ta, tb, tab) + ss(tb, ta, tab)) = q(ta, tb, tab). (C.26)

(b) If ta > 2tb + 2tab + 2, in equilibrium:

i. Firm a’s exclusive supplier j ∈ Sa chooses supply quantity s∗j,a = se(ta, tb + tab,0);

ii. Firm b’s exclusive supplier j ∈ Sb chooses supply quantity s∗j,b = se(tb + tab, ta,0);

iii. Shared supplier j ∈ Sab chooses supply quantities s∗j,a = 0 and s∗j,b = se(tb + tab, ta,0);

iv. Firm a chooses supply quantity q∗a = tase(ta, tb + tab,0) = q(1)(ta, tb + tab,0);

v. Firm b chooses supply quantity q∗b = (tb + tab)se(tb + tab, ta,0) = q(1)(tb + tab, ta,0);

vi. The total quantity the supply network produces is

q∗c = tase(ta, tb + tab,0) + (tb + tab)se(tb + tab, ta,0) = q(ta, tb + tab,0). (C.27)

Proof. Tier-2 supplier j’s problem is

(P(2)j) max πj(s(2)) (C.28)

subject to sj > 0. (C.29)
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By Proposition C.3(a), πj(s(2)) is concave in sj . With merely the nonnegativity constraints, constraint

qualification always holds. Therefore the Karush-Kuhn-Tucker (KKT) conditions

∂πj(s
∗
(2))

∂sj,i
6 0, with equality if s∗j,i > 0, (if j ∈ Si, i∈ S(1); or for i∈ S(1) if j ∈ Sab) (C.30)

are necessary and sufficient for s∗j > 0 to be a global maximizer. Given (s∗j′)j′∈S(2)\{j}, if s∗j solves P(2)j , then

s∗j is a best response to (s∗j′)j′∈S(2)\{j}. If for every j ∈ S(2), s∗j is a best response to (s∗j′)j′∈S(2)\{j}, then s∗(2)

is an equilibrium in pure strategies of P2.

(Case (a)). We note se(x1, x2, x3)> 0,∀x1, x2, x3 > 0; hence the supply quantity of every exclusive supplier,

as defined using se, is positive. If there exists a shared supplier j, then by the assumption ta 6 2tb + 2tab + 2

and the expression in (C.23), s∗j,a = ss(ta, tb, tab)> 0. Since ta > tb, s∗j,b = ss(tb, ta, tab) > 0. s∗j as defined is

nonnegative for every j ∈ S(2).

Substituting supply quantities in parts (a)i–(a)ii into (C.12) and (C.13), following some algebra, we verify

that
∂πj(s∗(2))
∂s∗
j,i

= 0 for i∈ S(1) and j ∈ Si ∪Sab. Therefore s∗(2) satisfies the nonnegativity constraints and the

KKT conditions (C.30) for every tier-2 supplier j ∈ S(2). Hence s∗(2) is an equilibrium of P2.

We verify part (a)iii by substituting the values of s∗j,i in parts (a)i and (a)ii into (13) for the corresponding

quantities, and substituting (C.22), (C.23), and (C.24). We verify (C.26) by substituting (13) into (9), then

substituting the values of s∗j,i in parts (a)i and (a)ii for the corresponding quantities.

(Case (b)). Except for s∗j,a = 0 for a shared supplier j, the supply quantities in parts (b)i–(b)iii are defined

using se and, as such, positive. Therefore s∗j as defined is nonnegative for every j ∈ S(2).

Analogous to case (a), substituting supply quantities in parts (b)i–(b)iii into (C.12) and (C.13), following

some algebra, we verify that
∂πj(s∗(2))
∂s∗
j,i

= 0 for exclusive supplier j ∈ Si, i ∈ S(1), and for shared supplier

j ∈ Sab and i = b. We only need to verify that
∂πj(s

∗
(2))

∂sj,a
6 0 for every shared supplier j ∈ Sab to verify the

KKT conditions (C.30). We substitute the supply quantities s∗(2) into (C.13) to find

∂πj(s
∗
(2))

∂sj,a
= a− vT − 4βtase(ta, tb + tab,0)− 2β(tb + tab)se(tb + tab, ta,0)− 2βse(tb + tab, ta,0) (C.31)

= a− vT − 4βtase(ta, tb + tab,0)− 2β(tb + tab + 1)se(tb + tab, ta,0). (C.32)

L(x1, x2, x3) is symmetric in x1 and x2 in the sense that L(x1, x2, x3) = L(x2, x1, x3). Let L̂ = L(ta, tb +

tab,0) =L(tb + tab, ta,0). Substitute the definition of se into (C.32) to get

∂πj(s
∗
(2))

∂sj,a
= a− vT − 2(α− vT )

ta(tb + tab + 2)

L̂
− (α− vT )

(ta + 2)(tb + tab + 1)

L̂
(C.33)

= (a− vT )

[
1− 1

L̂
(3tatb + 3tatab + 5ta + 2tb + 2tab + 2)

]
(C.34)

= (a− vT )
1

L̂
(−ta + 2tb + 2tab + 2) (C.35)

which is nonpositive by the assumption α> vT and the premise ta > 2tb + 2tab + 2.

We verify parts (b)iv and (b)v by substituting the values of s∗j,i in parts (b)i–(b)iii into (13) for the

corresponding quantities. We verify (C.27) by substituting (13) into (9) then substituting the values of s∗j,i

in parts (b)i–(b)iii for the corresponding quantities. �
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C.3. Comparative Statics

In this section, we consider only the case α > vT . (If α = vT , by Proposition C.5, every supply quantity

is zero.) All comparative statics results, except those on q∗c and π∗c , are applicable only to non-null supply

networks. To facilitate the proofs we introduce an alternative notation of a supply network in terms of ta, the

number of exclusive suppliers to firm a, tb the number of exclusive suppliers to firm b, and tab the number

of shared suppliers. Specifically, we define an operator 〈·〉 : N3
0→G by

〈ta, tb, tab〉=



({a,b},{1, . . . , ta},{ta + 1, . . . , ta + tb},
{ta + tb + 1, . . . , ta + tb + tab})

, if ta + tab > 0 and tb + tab > 0

({a},{1, . . . , ta + tab},∅,∅), if ta + tab > 0 and tb + tab = 0

({b},∅,{1, . . . , tb + tab},∅), if ta + tab = 0 and tb + tab > 0

g∅, if ta + tab = 0 and tb + tab = 0

. (C.36)

Let f be a variable that arises from the production phase equilibrium (quantity, margin, profit, price, market

share). We denote by f(g) = f〈ta, tb, tab〉 the value of this variable in supply network g= 〈ta, tb, tab〉. We fur-

ther denote ∆1 f〈ta, tb, tab〉= f〈ta + 1, tb, tab〉 − f〈ta, tb, tab〉, ∆2 f〈ta, tb, tab〉= f〈ta, tb + 1, tab〉 − f〈ta, tb, tab〉,

and ∆3 f〈ta, tb, tab〉= f〈ta, tb, tab + 1〉− f〈ta, tb, tab〉.

Proof of Theorem 2. We begin by noting a few relationships between the equilibrium variables. By the

definition of p(0) and (C.1),

m∗c = (α−βq∗c)− (α− v0− 2βq∗c)− v0 = βq∗c . (C.37)

By Proposition C.4, π∗c = β(q∗c)2. Therefore, q∗c , m∗c, and π∗c always change in the same direction, which is

opposite to the change in p∗(1) by (C.1). Hence the direction of the change in any one of the four variables

determines those of the other three. Let i∈ S(1). By (C.5),

p∗(2)i = α− v0− v1− 4βq∗i − 2β(q∗c − q∗i ) = α− v0− v1− 2βq∗i − 2βq∗c . (C.38)

Then by (C.1),

m∗i = (α− v0− 2βq∗c)− v1− (α− v0− v1− 2βq∗i − 2βq∗c) = 2βq∗i . (C.39)

By (8),

π∗i =m∗i q
∗
i = 2β(q∗i )

2. (C.40)

Therefore, q∗i , m
∗
i , and π∗i always change in the same direction. Finally, ρ∗a = 1− ρ∗b.

Given the characterization of the equilibrium in Proposition C.5, we directly calculate the change ∆k f(g)

in each equilibrium variable f , factor the expression when appropriate, and then check its sign, for k= 1,2,3.

We illustrate the procedure for ∆1 f(g) only, which involves incrementing ta. We consider cases which satisfy

ta 6 2tb + 2tab + 2 and ta + 1 6 2tb + 2tab + 2 so that Proposition C.5(a) is applicable before and after

incrementing ta. We also elaborate on ∆3 f(g) for f ∈ {q∗a,m∗a, π∗a} when ta 6 2tb +2tab +2 that results in the

peculiar case of the cell with “+/−” in column (III) of Table 1 in the proof of Proposition C.6 that follows.

With some algebraic computation we find

∆1 q
∗
c(g) =

(α− vT )(tb + 2tab + 2)2

βL(ta, tb, tab)L(ta + 1, tb, tab)
> 0 (C.41)
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since α> vT and L(x1, x2, x3)> 0,∀x1, x2, x3 > 0. Since q∗c , m∗c, and π∗c always change in the same direction,

opposite to the change in p∗(1), we have the results for m∗c, π
∗
c , and p∗(1) as well.

∆1 q
∗
a(g) =

2(α− vT )(tab + tb + 1)(2tab + tb + 2)

βL(ta, tb, tab)L(ta + 1, tb, tab)
> 0. (C.42)

This gives the results for q∗a,m
∗
a, and π∗a. Similarly

∆1 q
∗
b(g) =− (α− vT )tb(2tab + tb + 2)

βL(ta, tb, tab)L(ta + 1, tb, tab)
< 0 (C.43)

This gives the results for q∗b ,m
∗
b, and π∗b .

∆1 p
∗
(2)a(g) =−2(α− vT )(2tab + tb + 2)(4tab + 3tb + 4)

L(ta, tb, tab)L(ta + 1, tb, tab)
< 0 (C.44)

∆1 p
∗
(2)b(g) =−4(α− vT )(tab + 1)(2tab + tb + 2)

L(ta, tb, tab)L(ta + 1, tb, tab)
< 0. (C.45)

Finally,

∆1 ρ
∗
a(g) =

3(2tab + tb + 2)(2tab + 3tb)

2(4t2ab + 4tatab + 4tbtab + 4tab + 3ta + 3tatb + 3tb)(4t2ab + 4tatab + 4tbtab + 8tab + 3ta + 3tatb + 6tb + 3)
> 0

(C.46)

(“> 0” if tb + tab > 0) which gives the results for ρ∗b as well. �

Proposition 1 is a simplified version of Proposition C.6:

Proposition C.6. Given supply network g ∈G where ta 6 2tb + 2tab + 2, adding a shared supplier to g

increases equilibrium variables q∗a, m∗a, and π∗a if and only if

ta < θ(tb, tab)≡
√

33t2b + 72tbtab + 108tb + 48t2ab + 144tab + 100

4
− tab−

tb
4
− 3

2
. (C.47)

Proof. As we have shown in the proof of Theorem 2, q∗a,m
∗
a, and π∗a always change in the same direction.

Hence it suffices to show the effect on q∗a. Using the result from Proposition C.5, we find

∆3 q
∗
a(g) =−2(α− vT )(4tatab− 4t2ab− 8tbtab− 12tab + 2t2a + tbta + 6ta− 4t2b − 12tb− 8)

3βL(ta, tb, tab)L(ta, tb, tab + 1)
. (C.48)

Since L(x1, x2, x3)> 0,∀x1, x2, x3 > 0,

sgn(∆3 q
∗
a(g)) = sgn(−(4tatab− 4t2ab− 8tbtab− 12tab + 2t2a + tbta + 6ta− 4t2b − 12tb− 8)) (C.49)

Note that what is inside the sgn operator on the right-hand side of (C.49) is quadratic in ta with coefficient

−2 on t2a and two roots in R as follows:

ta− =
1

4
(−6− tb− 4tab−

√
72tbtab + 48t2ab + 144tab + 33t2b + 108tb + 100) (C.50)

ta+ =
1

4
(−6− tb− 4tab +

√
72tbtab + 48t2ab + 144tab + 33t2b + 108tb + 100) (C.51)

It is clear that ta− < 0. We next show that 0< ta+ < 2tb + 2tab + 2. Note

(
√

72tbtab + 48t2ab + 144tab + 33t2b + 108tb + 100)2− (−6− tb−4tab)
2 = 32(tb(2tab +3)+ t2ab +3tab + t2b +2)> 0

(C.52)

so √
72tbtab + 48t2ab + 144tab + 33t2b + 108tb + 100> | − 6− tb− 4tab| (C.53)
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which is equivalent to ta+ > 0. On the other hand,

(2tb + 2tab + 2)− ta+ =
1

4

(
12tab + 9tb + 14−

√
36tb(2tab + 3) + 4(12t2ab + 36tab + 25) + 33t2b

)
. (C.54)

Now

(12tab + 9tb + 14)2− (
√

36tb(2tab + 3) + 4(12t2ab + 36tab + 25) + 33t2b)2

= 8[37 + 6t2b + 60tab + 24t2ab + 9tb(5 + 4tab)]> 0 (C.55)

which implies (C.54) is negative. Therefore, when ta 6 2tb + 2tab + 2, ∆3(q∗a)> 0 if ta < ta+ and ∆3(q∗a)< 0

if ta > ta+. �

Proof of Proposition 2. Similar to the proof of Theorem 2; by calculating, factoring, and observing the

sign of the relevant difference. �

Appendix D: Proofs for the Auditing Phase

We define V : Ξ× Γ→ R as the value function. Let Ṽ (ξ, γ,x) be expected value of choosing x ∈Xγ when

in state γ ∈ Γ and following policy ξ ∈ Ξ thereon. Therefore, given auditing policy ξ ∈ Ξ and state γ ∈ Γ,

V (ξ, γ) = Ṽ (ξ, γ, ξ(γ)), and

Ṽ (ξ, γ,pp) = π(γ)− ζ(γ) (D.1)

and given i∈Uγ ,

Ṽ (ξ, γ,ad(i)) =−a+ (1−u)V (ξ, γ⊕ i) +uV (ξ, γ	 i). (D.2)

Ṽ (ξ, γ,ar(i)) =−a+ (1−u)V (ξ, γ⊕ i) +u(−r+V (ξ, γ⊕ i)) (D.3)

=−a−ur+V (ξ, γ⊕ i). (D.4)

Recall from Section 5.1 that rp is a shorthand for “audit and rectify (ar) all remaining unaudited suppliers

if a+ur < uwz and proceed to production (pp) otherwise” and crp ≡ (uwz)∧ (a+ur) is the cost associated

with each unaudited supplier in the rp subphase. For any γ ∈ Γ and ξ ∈Ξ we write Ṽ ∗(γ,rp) = Ṽ (ξ, γ,rp) =

π(γ)− crp|Uγ |.

Given state γ ∈ Γ, let R+(γ)⊆ Γ be the set of states reachable from γ (including γ itself): γ′ ∈R+(γ) if

and only if there exists a policy ξ ∈ Ξ such that γ′ is reached from γ with strictly positive probability by

following ξ.

D.1. Two Subphases of Auditing

Proposition D.1. The buyer can be at least as well off by postponing all audit and rectify (ar) actions

to after all audit and drop (ad) actions.

Proof. Let ξ ∈Ξ be such that there exists γ = (g,U)∈ Γ, i∈Uγ , and j ∈Uγ⊕i such that

ξ(γ) = ar(i) and ξ(γ⊕ i) = ad(j). (D.5)
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(If there does not exist such a triple of γ, i, and j then in ξ already all ar actions come after all ad actions.)

We specify a policy ξ′ ∈Ξ otherwise identical to ξ but with the sequence of the above two actions swapped,

namely,

ξ′(γ′) = ξ(γ′), ∀γ′ ∈ Γ\{γ, γ⊕ j, γ	 j} (D.6)

ξ′(γ) = ad(j) (D.7)

ξ′(γ⊕ j) = ar(i) (D.8)

ξ′(γ	 j) =

{
ar(i), if i 6∈Dg(j)

ξ(γ	 j), if i∈Dg(j)
. (D.9)

It suffices to show V (ξ′, γ)> V (ξ, γ).

Now

V (ξ, γ) = Ṽ (ξ, γ,ar(i)) (D.10)

=−a−ur+V (ξ, γ⊕ i) (D.11)

=−a−ur+ Ṽ (ξ, γ⊕ i,ad(j)) (by (D.5)) (D.12)

=−a−ur− a+ (1−u)V (ξ, γ⊕ i⊕ j) +uV (ξ, γ⊕ i	 j) (by (D.2)) (D.13)

and

V (ξ′, γ) = Ṽ (ξ′, γ,ad(j)) (D.14)

=−a+ (1−u)V (ξ′, γ⊕ j) +uV (ξ′, γ	 j). (D.15)

There are two cases of i:

• Case 1: i 6∈Dg(j). Then

V (ξ′, γ) =−a+ (1−u)Ṽ (ξ′, γ⊕ j,ar(i)) +uṼ (ξ′, γ	 j,ar(i)) (D.16)

=−a+ (1−u)(−a−ur+V (ξ′, γ⊕ j⊕ i))

+u(−a−ur+V (ξ′, γ	 j⊕ i)) (D.17)

=−a− a−ur+ (1−u)V (ξ′, γ⊕ j⊕ i) +uV (ξ′, γ	 j⊕ i) (D.18)

Note that ξ′|R+(γ⊕j⊕i) = ξ|R+(γ⊕i⊕j), so V (ξ′, γ⊕ j⊕ i) = V (ξ, γ⊕ i⊕ j). Since i 6∈Dg(j), γ	 j⊕ i= γ⊕ i	 j.
Also, ξ′|R+(γ	j⊕i) = ξ|R+(γ⊕i	j). Hence, V (ξ′, γ	 j⊕ i) = V (ξ, γ⊕ i	 j). Therefore by comparing (D.13) and

(D.18) we conclude V (ξ′, γ) = V (ξ, γ).

• Case 2: i∈Dg(j). Immediately, γ⊕ i	 j = γ	 j.

V (ξ′, γ) =−a+ (1−u)Ṽ (ξ′, γ⊕ j,ar(i)) +uV (ξ′, γ	 j) (D.19)

=−a+ (1−u)(−a−ur+V (ξ′, γ⊕ j⊕ i)) +uV (ξ′, γ	 j) (D.20)

=−a− (1−u)(a+ur) + (1−u)V (ξ′, γ⊕ j⊕ i) +uV (ξ′, γ	 j). (D.21)

Same as above, since ξ′|R+(γ⊕j⊕i) = ξ|R+(γ⊕i⊕j),

V (ξ′, γ⊕ j⊕ i) = V (ξ, γ⊕ i⊕ j). (D.22)
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Since i∈Dg(j), ξ
′(γ	 j) = ξ(γ	 j). Hence ξ′|R+(γ	j) = ξ|R+(γ	j). By γ⊕ i	 j = γ	 j,

V (ξ, γ⊕ i	 j) = V (ξ, γ	 j) = V (ξ′, γ	 j). (D.23)

Substitute (D.22) and (D.23) into (D.21), then subtract (D.13) to obtain

V (ξ′, γ)−V (ξ, γ) = a+ur− (1−u)(a+ur) = u(a+ur)> 0. (D.24)

This completes the proof. Note that the buyer is strictly better off by swapping the actions ar(i) and ad(j)

(as in ξ′) if and only if i∈Dg(j) and u(a+ur)> 0. �

Proposition D.2. Limit the buyer’s actions to audit and rectify (ar) unaudited suppliers and proceed to

production (pp). The optimal auditing policy is to audit and rectify all unaudited suppliers in any sequence

if a+ur6 uwz and to proceed to production if a+ur> uwz. Furthermore, given γ ∈ Γ,

V ∗(γ) = π(γ)− [(uwz)∧ (a+ur)]|Uγ |= π(γ)− crp|Uγ |. (D.25)

Proof. Given γ ∈ Γ and i∈Uγ , by (2) and the definition of ζ,

Ṽ ∗(γ,pp) = π(γ)−uwz|Uγ |. (D.26)

We prove the result by mathematical induction on the number of unaudited supplier in the state, |Uγ |. If

|Uγ |= 1, let i∈Uγ , then γ⊕ i is a terminal state. By (5),

Ṽ ∗(γ,ar(i)) =−a−ur+V ∗(γ⊕ i) =−a−ur+π(γ⊕ i) =−a−ur+π(γ) (D.27)

since states γ⊕ i and γ have the same underlying supply network, which determines the production profit.

Note Ṽ ∗(γ,ar(i)) is independent of i. pp is preferred to ar(i) iff Ṽ ∗(γ,pp)> Ṽ ∗(γ,ar(i)), or π(γ)−uwz >
−a−ur+π(γ), or a+ur> uwz. Hence,

V ∗(γ) = π(γ)− (uwz)∧ (a+ur). (D.28)

By mathematical induction, suppose if |Uγ |=m,

V ∗(γ) = π(γ)−m[(uwz)∧ (a+ur)]. (D.29)

Now if |Uγ |=m+ 1, pick arbitrary i∈Uγ , then |Uγ⊕i|=m. By (5) and (D.29),

Ṽ ∗(γ,ar(i)) =−a−ur+V ∗(γ⊕ i) =−a−ur+π(γ)−m[(uwz)∧ (a+ur)]. (D.30)

pp is preferred to ar(i) iff Ṽ ∗(γ,pp) > Ṽ ∗(γ,ar(i)), or π(γ)− (m+ 1)uwz > −a− ur + π(γ)−m[(uwz) ∧
(a+ur)], or a+ur+m[(uwz)∧ (a+ur)]> (m+ 1)uwz, which holds iff a+ur> uwz, as we wanted to show.

Finally, to complete the induction step, note

V ∗(γ) =

Ṽ
∗(γ,pp), if a+ur> uwz

Ṽ ∗(γ,ar(i)), if a+ur6 uwz
(D.31)

=

{
π(γ)− (m+ 1)uwz, if a+ur> uwz

−a−ur+π(γ)−m[(uwz)∧ (a+ur)], if a+ur6 uwz
(D.32)

= π(γ)− (m+ 1)[(uwz)∧ (a+ur)]. � (D.33)

Proof of Theorem 3. The result is a direct consequence of Propositions D.1 and D.2. �

Proof of Corollary 1. The result follows (D.25) in Proposition D.2. �
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D.2. Optimal Auditing Sequence

We first identify an optimal policy in a general class of supply networks in Theorem D.1, the proof of which

serves as the basis for our proof of Theorem D.2, an expanded and technical version of Theorem 4.

Assumption D.1 (decreasing differences of production profit). For any γ ∈ Γ and any i, i′ ∈

Uγ , i
′ /∈Dγ(i),

∇(γ, i′)6∇(γ	 i, i′). (D.34)

To state the next assumption, we define a concept of symmetry for suppliers.

Definition D.1. In state γ = (g,U) two unaudited suppliers i, i′ ∈U are symmetric (1) if they belong to

the same class of tier-2 suppliers Sa, Sb, or Sab; or, (2) in the case of |Sa|= |Sb| and |Sa ∩U |= |Sb ∩U |, (i)

if i∈ Sa and i′ ∈ Sb, or (ii) if i= a and i′ = b.

Assumption D.2 (preservation of LVUS). Let γ ∈ Γ and i be an LVUS in γ. Let i′ ∈ Uγ that is not

symmetric with i. Then i is an LVUS in γ	 i′, i.e.,

∇(γ	 i′, i)6∇(γ	 i′, i′′), ∀i′′ ∈Uγ	i′ . (D.35)

Under Assumption D.2, an LVUS remains an LVUS when we remove a nonsymmetric supplier from the

supply network.

Given the assumptions we may completely characterize the optimal auditing policy.

Theorem D.1. Let γ0 = (g,U) ∈ Γ be such that for any γ ∈ R+(γ0), no unaudited supplier in γ is a

dependent of another unaudited supplier, i.e., any i, i′ ∈ Uγ (i 6= i′) satisfy i /∈Dg(i
′) and i′ /∈Dg(i). Under

Assumptions D.1 and D.2, the following policy ξ∗ is optimal in every state γ ∈R+(γ0):

ξ∗(γ) =

{
ad(i), if i∈Uγ , u∇(γ, i) + a< crp, and ∇(γ, i)6∇(γ, i′),∀i′ ∈Uγ

rp, if u∇(γ, i) + a> crp,∀i∈Uγ
. (D.36)

Proof. We prove the result by mathematical induction on the number of unaudited supplier in the state,

|Uγ |. If |Uγ |= 1, let i∈Uγ , then Ṽ ∗(γ,ad(i))> Ṽ ∗(γ,rp) if and only if

− a+ (1−u)V ∗(γ⊕ i) +uV ∗(γ	 i)>π(γ)− crp (D.37)

if and only if

− a+ (1−u)π(γ⊕ i) +uπ(γ	 i)>π(γ)− crp. (D.38)

But π(γ⊕ i) = π(γ), so above is equivalent to

− a−u(π(γ⊕ i)−π(γ	 i))>−crp (D.39)

equivalent to the condition stipulated by ξ∗ for taking action ad(i). Therefore ξ∗ is optimal at γ.

By way of mathematical induction, suppose ξ∗ is optimal for all γ′ ∈ R+(γ0) such that |Uγ′ | 6 k ∈ N+.

Let γ ∈R+(γ0) be such that |Uγ |= k+ 1. We divide the proof of the induction step into two cases based on

(D.36).
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Case a (u∇(γ, i) + a> crp,∀i ∈Uγ). We show that Ṽ ∗(γ,rp)> Ṽ ∗(γ,ad(i)) for any i ∈Uγ , thus proving

the optimality of the action rp when u∇(γ, i) + a> crp,∀i ∈ Uγ as Theorem D.1 prescribes. Let i ∈ Uγ . We

first show two equalities: V ∗(γ⊕ i) = Ṽ ∗(γ⊕ i,rp) and V ∗(γ	 i) = Ṽ ∗(γ	 i,rp).

First consider the state γ⊕ i. Note π(γ⊕ i) = π(γ) and for any i′ ∈Uγ\{i}, π(γ⊕ i	 i′) = π(γ	 i′). Then for

any i′ ∈Uγ⊕i =Uγ\{i},

u∇(γ⊕ i, i′) + a= u(π(γ⊕ i)−π(γ⊕ i	 i′)) + a= u(π(γ)−π(γ	 i′)) + a= u∇(γ, i′) + a> crp. (D.40)

Hence by the definition of ξ∗, ξ∗(γ⊕ i) = rp, i.e., ξ∗ prescribes the action rp in state γ⊕ i. But |Uγ⊕i|= k.

By invoking the induction hypothesis (that ξ∗ is optimal at any state γ′ ∈R+(γ0) such that |Uγ′ |6 k), we

conclude that the action rp is optimal at state γ⊕ i. Therefore V ∗(γ⊕ i) = Ṽ ∗(γ⊕ i,rp).

Next consider the state γ	 i. Since no unaudited supplier in γ is a dependent of another, Uγ	i =Uγ\{i}. By

Assumption D.1, for any i′ ∈Uγ	i,

u(π(γ	 i)−π(γ	 i	 i′)) + a> u(π(γ)−π(γ	 i′)) + a= u∇(γ, i′) + a (D.41)

which we know is greater than or equal to crp for any i′ ∈ Uγ . Hence ξ∗(γ 	 i) = rp. But |Uγ	i| 6 k. By

invoking the induction hypothesis (that ξ∗ is optimal at any state γ′ ∈ R+(γ0) such that |Uγ′ | 6 k), we

conclude that the action rp is optimal in state γ	 i. Therefore V ∗(γ	 i) = Ṽ ∗(γ	 i,rp).

Now

Ṽ ∗(γ,rp) = π(γ)− crp|Uγ | (D.42)

= π(γ)− crp(|Uγ | − 1)− crp (D.43)

> π(γ)− crp(|Uγ | − 1)− [u(π(γ)−π(γ	 i)) + a] (D.44)

=−a+ (1−u)(π(γ⊕ i)− crp|Uγ⊕i|) +u(π(γ	 i)− crp|Uγ	i|) (D.45)

=−a+ (1−u)Ṽ ∗(γ⊕ i,rp) +uṼ ∗(γ	 i,rp) (D.46)

=−a+ (1−u)V ∗(γ⊕ i) +uV ∗(γ	 i) (D.47)

= Ṽ ∗(γ,ad(i)) (D.48)

where (D.44) is by the assumption u(π(γ)− π(γ 	 i)) + a> crp; (D.45) is by |Uγ⊕i|= |Uγ	i|= |Uγ | − 1 (no

unaudited supplier in γ is a dependent of another so that γ	 i has exactly one less unaudited supplier than

γ); and (D.47) is by V ∗(γ⊕ i) = Ṽ ∗(γ⊕ i,rp) and V ∗(γ	 i) = Ṽ ∗(γ	 i,rp).

Case b (∃i′ ∈Uγ such that u∇(γ, i′)+a< crp). Let i∈Uγ be an LVUS in γ, i.e., ∇(γ, i)6∇(γ, j),∀j ∈Uγ .

We first show that Ṽ ∗(γ,ad(i)) > Ṽ ∗(γ,rp), then show that Ṽ ∗(γ,ad(i)) > Ṽ ∗(γ,ad(i′)) for any i′ ∈ Uγ .

With these we prove that if i is an LVUS in γ and u∇(π, i) +a< crp then the optimal action to take in state

γ is ad(i) as Theorem D.1 prescribes. Now

Ṽ ∗(γ,ad(i)) =−a+ (1−u)V ∗(γ⊕ i) +uV ∗(γ	 i) (D.49)

>−a+ (1−u)Ṽ ∗(γ⊕ i,rp) +uṼ ∗(γ	 i,rp) (D.50)

=−a+ (1−u)(π(γ⊕ i)− crp|Uγ⊕i|) +u(π(γ	 i)− crp|Uγ	i|) (D.51)

=−a+π(γ)− crp|Uγ⊕i| −u(π(γ)−π(γ	 i)) (D.52)

>π(γ)− crp|Uγ | (D.53)

= Ṽ ∗(γ,rp) (D.54)
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where (D.50) is by V ∗ being optimal; (D.52) is by π(γ⊕ i) = π(γ); and (D.53) is by |Uγ⊕i|= |Uγ |−1 and the

premise of case b.

We next show that Ṽ ∗(γ,ad(i)) > Ṽ ∗(γ,ad(i′)) for any i′ ∈ Uγ . Let i′ ∈ Uγ such that i′ is not symmetric

with i. (If i′ is symmetric with i, clearly Ṽ ∗(γ,ad(i)) = Ṽ ∗(γ,ad(i′)).) Since i is an LVUS in γ ⊕ i′ and

u(π(γ ⊕ i′)− π(γ ⊕ i′ 	 i)) + a = u(π(γ)− π(γ 	 i)) + a < crp (by the premise of case b), by the induction

hypothesis, ξ∗(γ⊕ i′) = ad(i). On the other hand, by Assumption D.2, i is an LVUS in γ	 i′; therefore11

ξ∗(γ	 i′) =


ad(i), if u(π(γ	 i′)−π(γ	 i′	 i)) + a< crp

ar(i), if u(π(γ	 i′)−π(γ	 i′	 i)) + a> crp and a+ur < uwz

pp, if u(π(γ	 i′)−π(γ	 i′	 i)) + a> crp and a+ur> uwz

. (D.55)

We next look at the three cases in (D.55) separately. In each case we devise a policy ξ̂ so that the buyer’s

expected profit from first taking the action ad(i) and following ξ̂ thereafter is at least as good as the expected

profit from first taking ad(i′) and following the optimal policy ξ∗ thereafter (ξ∗ is optimal thereafter by

the induction hypothesis). That is, Ṽ (ξ̂, γ,ad(i))> Ṽ (ξ∗, γ,ad(i′)). Since Ṽ ∗(γ,ad(i))> Ṽ (ξ̂, γ,ad(i))) and

Ṽ (ξ∗, γ,ad(i′)) = Ṽ ∗(γ,ad(i′)), we must then have Ṽ ∗(γ,ad(i))> Ṽ ∗(γ,ad(i′)) as desired. In each case we

consider the following four events that together form a partition of the sample space:

H11 = {both i and i′ are compliant} (D.56)

H10 = {i is compliant and i′ is not compliant} (D.57)

H01 = {i is not compliant and i′ is compliant} (D.58)

H00 = {neither i nor i′ is compliant}. (D.59)

Case b(i) (u(π(γ	 i′)−π(γ	 i′	 i)) +a< crp). Let ξ̂ ∈Ξ be the policy such that ξ̂(γ⊕ i) = ξ̂(γ	 i) =

ad(i′) and ξ̂(γ′) = ξ∗(γ′) for any γ′ ∈ Γ\{γ⊕ i, γ	 i}.
Conditional on H11: The path of state transition by taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ⊕ i ad(i′)−−−→ γ⊕ i⊕ i′ (D.60)

while that by taking ad(i′) at state γ then following policy ξ∗ is

γ
ad(i′)−−−→ γ⊕ i′ ad(i)−−−→ γ⊕ i′⊕ i. (D.61)

Note that γ⊕ i⊕ i′ = γ⊕ i′⊕ i and ξ̂|R+(γ⊕i⊕i′) = ξ∗|R+(γ⊕i′⊕i), so the expected profit at γ from first taking

ad(i) then following policy ξ̂ is the same as that from first taking ad(i′) then following ξ∗ conditional on

H11.

Conditional on H10: The path of state transition by taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ⊕ i ad(i′)−−−→ γ⊕ i	 i′ (D.62)

while that by taking ad(i′) at state γ then following policy ξ∗ is

γ
ad(i′)−−−→ γ	 i′ ad(i)−−−→ γ	 i′⊕ i. (D.63)

11 If u(π(γ 	 i′)− π(γ 	 i′ 	 i)) + a> crp and a+ ur < uwz, ξ∗ prescribes auditing and rectify (if noncompliant) all
unaudited suppliers in any sequence; here we choose i to audit next.
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Note that γ⊕ i	 i′ = γ	 i′⊕ i and ξ̂|R+(γ⊕i	i′) = ξ∗|R+(γ	i′⊕i), so the expected profit at γ from first taking

ad(i) then following policy ξ̂ is the same as that from first taking ad(i′) then following ξ∗ conditional on

H10.

Conditional on H01 or H00: Similarly we can show that the expected profit at γ from first taking ad(i)

then following policy ξ̂ is the same as that from first taking ad(i′) then following ξ∗.

Therefore the unconditional expected profit at γ from first taking ad(i) then following policy ξ̂ and that

from first taking ad(i′) then following ξ∗, which are integrals of the respected conditional expected profits,

must be equal; that is Ṽ (ξ̂, γ,ad(i)) = Ṽ (ξ∗, γ,ad(i′)). Therefore

Ṽ ∗(γ,ad(i))> Ṽ (ξ̂, γ,ad(i)) = Ṽ (ξ∗, γ,ad(i′)) = Ṽ ∗(γ,ad(i′)) (D.64)

where the induction hypothesis (that ξ∗ is optimal at any state γ′ ∈ R+(γ0) with |Uγ′ | 6 k) gives the last

equality.

Case b(ii) (u(π(γ	 i′)− π(γ	 i′	 i)) + a> crp and a+ur < uwz). Let ξ̂ ∈Ξ be the policy such that

ξ̂(γ⊕ i) = ad(i′), ξ̂(γ	 i) = ar(i′), and ξ̂(γ′) = ξ∗(γ′) for any γ′ ∈ Γ\{γ⊕ i, γ	 i}.

Conditional on H11: Using the same steps as in case b(i) we can show the expected profit at γ from first

taking ad(i) then following ξ̂ is the same as that from first taking ad(i′) then following ξ∗ conditional on

H11.

Conditional on H10: The path of state transition by taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ⊕ i ad(i′)−−−→ γ⊕ i	 i′ (D.65)

while that by taking ad(i′) at state γ then following policy ξ∗ is

γ
ad(i′)−−−→ γ	 i′ ar(i)−−−→ γ	 i′⊕ i. (D.66)

Note that γ⊕ i	 i′ = γ	 i′⊕ i and ξ̂|R+(γ⊕i	i′) = ξ∗|R+(γ	i′⊕i), so the expected profit at γ from first taking

ad(i) then following ξ̂ is the same as that from first taking ad(i′) then following ξ∗ conditional on H10.

Conditional on H01: Similarly we can show that the expected profit at γ from first taking ad(i) then

following policy ξ̂ is the same as that from first taking ad(i′) then following ξ∗.

Conditional on H00: The path of state transition by taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ	 i ar(i′)−−−→ γ	 i⊕ i′ (D.67)

while that by taking ad(i′) at state γ then following policy ξ∗ is

γ
ad(i′)−−−→ γ	 i′ ar(i)−−−→ γ	 i′⊕ i. (D.68)

Since u(π(γ	 i′⊕ i)−π(γ	 i′⊕ i	 i′′)) +a= u(π(γ	 i′)−π(γ	 i′	 i′′)) +a> u(π(γ	 i′)−π(γ	 i′	 i)) +a

for any i′′ ∈Uγ	i′⊕i (the last inequality is because i is an LVUS in γ	 i′, by Assumption D.2), and u(π(γ	

i′)− π(γ 	 i′ 	 i)) + a > crp (premise of case b(ii)), we have u(π(γ 	 i′ ⊕ i)− π(γ 	 i′ ⊕ i	 i′′)) + a > crp.

Therefore ξ∗(γ	 i′⊕ i) = rp. Note that since ξ̂|R+(γ	i⊕i′) = ξ∗|R+(γ	i⊕i′),

V (ξ̂, γ	 i⊕ i′) = V ∗(γ	 i⊕ i′)> Ṽ ∗(γ	 i⊕ i′,rp). (D.69)
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On the other hand, since |Uγ	i⊕i′ |= |Uγ	i′⊕i|,

Ṽ ∗(γ	 i⊕ i′,rp)− Ṽ ∗(γ	 i′⊕ i,rp) = π(γ	 i⊕ i′)−π(γ	 i′⊕ i) = π(γ	 i)−π(γ	 i′)> 0 (D.70)

Together they imply

V (ξ̂, γ	 i⊕ i′)> Ṽ ∗(γ	 i′⊕ i,rp) = V ∗(γ	 i′⊕ i) (D.71)

where the last equality is because ξ∗(γ 	 i′ ⊕ i) = rp. Therefore the expected profit at γ from first taking

ad(i) then following ξ̂ is greater than or equal to that from first taking ad(i′) then following ξ∗ conditional

on H10.

Therefore the unconditional expected profit at γ from first taking ad(i) then following policy ξ̂ is greater

than or equal to that from first taking ad(i′) then following ξ∗; that is Ṽ (ξ̂, γ,ad(i)) > Ṽ (ξ∗, γ,ad(i′)).

Therefore

Ṽ ∗(γ,ad(i))> Ṽ (ξ̂, γ,ad(i))> Ṽ (ξ∗, γ,ad(i′)) = Ṽ ∗(γ,ad(i′)) (D.72)

where the induction hypothesis gives the last equality.

Case b(iii) (u(π(γ	 i′)−π(γ	 i′	 i)) + a> crp and a+ur> uwz). Let ξ̂ ∈Ξ be the policy such that

(1) ξ̂(γ ⊕ i) = ad(i′), (2) for any γ′ ∈R+(γ 	 i) such that i′ ∈ Uγ′ , ξ̂(γ′) = ξ∗(γ′	 i′), and (3) ξ̂(γ′) = ξ∗(γ′)

for any other state γ′ (i.e., γ′ ∈ Γ\{γ⊕ i}\{γ′′ ∈R+(γ	 i) : i′ ∈Uγ′′}).
Conditional on H11: Using the same corresponding steps as in case b(i) we can show the expected profit

at γ from first taking ad(i) then following ξ̂ is the same as that from first taking ad(i′) then following ξ∗

conditional on H11.

Conditional on H10: Since i is an LVUS in γ	 i′, by the premise of case b(iii), any unaudited supplier i′′

in state γ ⊕ i	 i′ must have u∇(γ ⊕ i	 i′, i′′) + a= u∇(γ 	 i′, i′′) + a> crp, then the induction hypothesis

implies ξ∗(γ ⊕ i	 i′) = pp. By the definition of ξ̂, ξ̂(γ ⊕ i	 i′) = ξ∗(γ ⊕ i	 i′). Therefore ξ̂(γ ⊕ i	 i′) = pp.

Then the path of the state transition by taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ⊕ i ad(i′)−−−→ γ⊕ i	 i′ pp−→ . (D.73)

The path of the state transition by taking ad(i′) at state γ then following policy ξ∗ is

γ
ad(i′)−−−→ γ	 i′ pp−→ . (D.74)

Note that π(γ⊕ i	 i′) = π(γ	 i′), so the only difference in the conditional expected profit between the above

two paths is the additional cost a of carrying out one more audit in (D.73) (since i is compliant on H10 it

will not incur any penalty from violation later on).

Conditional on H01: The path of the state transition by taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ	 i (D.75)

while the path of the state transition by taking ad(i′) at state γ then following policy ξ∗ is

γ
ad(i′)−−−→ γ⊕ i′ ad(i)−−−→ γ⊕ i′	 i. (D.76)

Note that the definition of ξ̂ means that the path subsequent to γ 	 i in (D.75) and that subsequent to

γ ⊕ i′ 	 i in (D.76) will be identical except that i′ will remain unaudited in all subsequent states in (D.75)
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while it is vetted in (D.76). Since on H01 i
′ is compliant the only difference in the conditional expected profit

between the above two paths is the additional cost a of carrying out one more audit in (D.76) (since i′ is

compliant on H10, even if unaudited, it will not incur any penalty from violation later on).

Conditional on H00: The path of the state transition by taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ	 i pp−→ (D.77)

where ξ̂(γ	 i) = ξ∗(γ	 i	 i′) = pp by the premise of the current case and Assumption D.1 (so that u(π(γ	
i	 i′)−π(γ	 i	 i′	 i′′)) + a> crp,∀i′′ ∈Uγ	i	i′), while the path of the state transition by taking ad(i′) at

state γ then following policy ξ∗ is

γ
ad(i′)−−−→ γ	 i′ pp−→ . (D.78)

Therefore conditional on H00 the expected profit at γ from first taking ad(i) then following ξ̂ is greater than

that from first taking ad(i′) then following ξ∗ by precisely π(γ	 i)−π(γ	 i′)> 0.

Therefore the unconditional expected profit at γ from first taking ad(i) then following policy ξ̂ is greater

than or equal to that from first taking ad(i′) then following ξ∗; that is Ṽ (ξ̂, γ,ad(i)) > Ṽ (ξ∗, γ,ad(i′)).

Therefore

Ṽ ∗(γ,ad(i))> Ṽ (ξ̂, γ,ad(i))> Ṽ (ξ∗, γ,ad(i′)) = Ṽ ∗(γ,ad(i′)) (D.79)

where the induction hypothesis yields the last equality.

To sum up, in all cases b(i)–b(iii), Ṽ ∗(γ,ad(i))> Ṽ ∗(γ,ad(i′)).

ξ∗ is optimal at γ. �

Theorem 4 is a shortened and less technical version of Theorem D.2.

Theorem D.2. Under Condition 1 the following policy ξ∗∗ is optimal at any state γ in which every tier-1

firm is vetted: for any nonterminal state γ 6= γ1, let i be an LVUS in γ, then

ξ∗∗(γ) =

{
ad(i), if u∇(γ, i) + a< crp

rp, if u∇(γ, i) + a> crp
(D.80)

and for γ1 and i∈Uγ1 ,

ξ∗∗(γ1) =


ad(i), if

1

1 +u
(a+u∇(γ1, i)) +

u

1 +u
(a+uπ(γ1	 i))< crp

rp, if
1

1 +u
(a+u∇(γ1, i)) +

u

1 +u
(a+uπ(γ1	 i))> crp

. (D.81)

The policy ξ∗∗ differs from ξ∗ only at state γ1 where Assumption D.1 fails. At state γ1, ξ∗∗ prescribes

ad(i) in a larger region of the parameter space than ξ∗ does, since ξ∗∗ takes into account the fact that if the

buyer drops i, the last remaining unaudited supplier will be even less valuable. The buyer has less incentive

to keep the supply network operating in state γ1 than in states in which decreasing differences hold.

Proof of Theorem D.2. Since we limit to states in which all tier-1 firms are vetted, (1) by Proposition 2

Assumption D.2 holds, and (2) no unaudited supplier can be a dependent of another unaudited supplier.

Under Condition 1, among all states we consider here the only state at which Assumption D.1 fails is γ1,

the induction proof of Theorem D.1 applies directly by replacing ξ∗ with ξ∗∗, with two exceptions: (1)

at γ1 itself, at which state we show the optimality of ξ∗∗ separately, and (2) at state γ2 = (g,U) where

g= ({a,b},{1},{3},{2}) and U = {1,2,3}, and if the LVUS, 1, in γ2 satisfies u∇(γ2, i) +a< crp. We will go

on to show why the induction proof still applies in the second case.
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ξ∗∗ is optimal at γ1 Set γ = γ1. Call the two symmetric tier-2 suppliers in γ1 i and i′. To analyze the

decision at γ we first consider the profits in state γ⊕ i and γ	 i. In state γ⊕ i the only unaudited supplier

is i′. The decision is between ad(i′) (with expected profit −a+ (1− u)π(γ⊕ i⊕ i′) + uπ(γ⊕ i	 i′)) and rp

(with expected profit π(γ⊕ i)− crp). Therefore

V ∗(γ⊕ i) =

{−a+ (1−u)π(γ⊕ i⊕ i′) +uπ(γ⊕ i	 i′), if u(π(γ⊕ i⊕ i′)−π(γ⊕ i	 i′)) + a< crp

π(γ⊕ i)− crp, if u(π(γ⊕ i⊕ i′)−π(γ⊕ i	 i′)) + a> crp
(D.82)

=

{−a+ (1−u)π(γ) +uπ(γ	 i′), if u(π(γ)−π(γ	 i′)) + a< crp

π(γ)− crp, if u(π(γ)−π(γ	 i′)) + a> crp
. (D.83)

Similary, in state γ	 i the only unaudited supplier is i′. The decision is between ad(i′) (with expected profit

−a+ (1−u)π(γ	 i⊕ i′)) and rp (with expected profit π(γ	 i)− crp). Therefore

V ∗(γ	 i) =

{−a+ (1−u)π(γ	 i⊕ i′), if uπ(γ	 i⊕ i′) + a< crp

π(γ	 i)− crp if uπ(γ	 i⊕ i′) + a> crp
(D.84)

=

{−a+ (1−u)π(γ	 i), if uπ(γ	 i) + a< crp

π(γ	 i)− crp if uπ(γ	 i) + a> crp
. (D.85)

By Proposition C.5 we algebraically verify that

π(γ)−π(γ	 i′)>π(γ	 i′) = π(γ	 i) (D.86)

(which is how Assumption D.1 is violated). By (D.83) and (D.85) we obtain

Ṽ ∗(γ,ad(i)) =−a+ (1−u)V ∗(γ⊕ i) +uV ∗(γ	 i) (D.87)

=


−2a+ (1−u)[(1−u)π(γ) +uπ(γ	 i′)] +u[(1−u)π(γ	 i)], if u(π(γ)−π(γ	 i′)) + a< crp

−a+ (1−u)[π(γ)− crp] +u[−a+ (1−u)π(γ	 i)], if
uπ(γ	 i) + a< crp
6 u(π(γ)−π(γ	 i′)) + a

−a+ (1−u)[π(γ)− crp] +u[π(γ	 i)− crp], if uπ(γ	 i) + a> crp

(D.88)

=


−2a+ (1−u)2π(γ) + 2u(1−u)π(γ	 i′), if u(π(γ)−π(γ	 i′)) + a< crp

−a+ (1−u)[π(γ)− crp] +u[−a+ (1−u)π(γ	 i)], if
uπ(γ	 i) + a< crp
6 u(π(γ)−π(γ	 i′)) + a

−a− crp + (1−u)π(γ) +uπ(γ	 i), if uπ(γ	 i) + a> crp

. (D.89)

On the other hand Ṽ ∗(γ,rp) = π(γ)− crp|Uγ |= π(γ)− 2crp. Hence Ṽ ∗(γ,ad(i))> Ṽ ∗(γ,rp) if and only if

one of the following three (mutually exclusive) conditions holds:

(a) a+u(π(γ)−π(γ	 i′))< crp and −2a+ (1−u)2π(γ) + 2u(1−u)π(γ	 i′)>π(γ)− 2crp;

(b) a+ uπ(γ 	 i)< crp 6 a+ u(π(γ)− π(γ 	 i′)) and −a+ (1− u)[π(γ)− crp] + u[−a+ (1− u)π(γ 	 i)]>
π(γ)− 2crp;

(c) a+uπ(γ	 i)> crp and −a− crp + (1−u)π(γ) +uπ(γ	 i)>π(γ)− 2crp.

In (a), the second inequality is equivalent to

2[a+u(π(γ)−π(γ	 i′))]−u2[(π(γ)−π(γ	 i′))−π(γ	 i′)]< 2crp (D.90)

which is implied by the first inequality and that (π(γ)−π(γ	 i′))>π(γ	 i′) which we know to be true. So

(a) can be simplified to just a+u(π(γ)−π(γ	 i′))< crp. In (b), the last inequality is equivalent to

[a+u(π(γ)−π(γ	 i))] +u(a+uπ(γ	 i))< (1 +u)crp (D.91)
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or
1

1 +u
[a+u(π(γ)−π(γ	 i))] +

u

1 +u
(a+uπ(γ	 i))< crp. (D.92)

Note that (D.92) and the second inequality crp 6 a+u(π(γ)−π(γ	 i′)) implies the first inequality a+uπ(γ	
i)< crp. So (b) can be simplified to

1

1 +u
[a+u(π(γ)−π(γ	 i))] +

u

1 +u
(a+uπ(γ	 i))< crp 6 a+u(π(γ)−π(γ	 i′)). (D.93)

In (c), the second inequality is equivalent to

a+u(π(γ)−π(γ	 i))< crp (D.94)

directly contradicting the first inequality; (c) can never hold. Therefore the three conditions above is equiv-

alent to either one of the following two conditions holds:

(a) a+u(π(γ)−π(γ	 i′))< crp;
(b) 1

1+u
[a+u(π(γ)−π(γ	 i))] + u

1+u
(a+uπ(γ	 i))< crp 6 a+u(π(γ)−π(γ	 i′))

which is obviously also equivalent to just

1

1 +u
[a+u(π(γ)−π(γ	 i))] +

u

1 +u
(a+uπ(γ	 i))< crp (D.95)

since a+u(π(γ)−π(γ	 i))>a+uπ(γ	 i). This shows the optimality of ξ∗∗ at γ1.

ξ∗∗ is optimal at γ2 The only case to show is when the LVUS i ∈ Uγ2 of γ2 satisfies u(π(γ2)− π(γ2 	
i)) +a< crp. The proof is analogous to case b in the proof of Theorem D.1 by replacing ξ∗ with ξ∗∗; here we

only point out the differences:

• Since now γ = γ2 and i′ is the shared supplier in γ2, γ	 i′ = γ1. Hence by the induction hypothesis

ξ∗∗(γ	 i′) =


ad(i), if F < crp;

ar(i), if F > crp and a+ur < uwz;

pp, if F > crp and a+ur> uwz;

(D.96)

where F = 1
1+u

[a+u(π(γ	 i′)−π(γ	 i′	 i))] + u
1+u

(a+uπ(γ	 i′	 i)). We redefine the three subcases b(i),

b(ii), and b(iii) in the proof by the three cases for ξ∗∗(γ	 i′) in (D.96) (i.e., replace a+ u(π(γ	 i′)− π(γ	
i′	 i)) in the original condition for each subcase by F ).

• In subcases b(ii) and b(iii), owing to (D.86),

∇(γ1, i
′)>∇(γ1	 i, i′). (D.97)

F > crp implies a+u(π(γ	 i′)−π(γ	 i′	 i))> crp.
• In subcase b(iii) (F > crp and a+ ur > uwz) conditional on H00 the path of state transition by taking

ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ	 i (D.98)

while the path of state transition by taking ad(i′) at state γ then following policy ξ∗∗ is

γ
ad(i′)−−−→ γ	 i′ pp−→ . (D.99)

Here by the definition of ξ̂ and the induction hypothesis one of two actions could be taken subsequent to

(D.98) (π(γ	 i	 i′) = 1
64

(α−vT )2

β
by Proposition C.5):
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a. If a+uπ(γ	 i	 i′) = a+u 1
64

(α−vT )2

β
> crp, then ξ̂(γ	 i) = ξ∗∗(γ	 i	 i′) = pp;

b. If a+uπ(γ	 i	 i′) = a+u 1
64

(α−vT )2

β
< crp, then ξ̂(γ	 i) = ξ∗∗(γ	 i	 i′) = ad(i′′) where i′′ is the

only supplier in Uγ	i	i′ .

In sub-subcase (b)(iii)a the original proof applies. In sub-subcase (b)(iii)b following (D.98) the action is

ad(i′′) with two possible consequences: that i′′ passes the audit leading to γ 	 i⊕ i′′ and that i′′ fails the

audit leading to γ 	 i	 i′′. Note that in either case the definition of ξ̂ prescribes pp afterward. Therefore,

the expected profit subsequent to γ	 i in (D.98) is

− a+ (1−u)π(γ	 i⊕ i′′) +uπ(γ	 i	 i′′)−wz =−a+

[
(1−u)

25

576
+u

1

36

]
(α− vT )2

β
−wz (D.100)

where the −wz comes from that in event H00 we know i′ is noncompliant and the equality is by Proposi-

tion C.5. On the other hand the expected profit subsequent to γ	 i′ in (D.99) is

π(γ	 i′)−uwz−wz =
1

25

(α− vT )2

β
−uwz−wz (D.101)

where the −uwz is due to i′′ remaining unaudited, the −wz is due to i being noncompliant, and the equality

is by Proposition C.5. We take the difference between (D.100) and (D.101) to get

− a+uwz−u 1

64

(α− vT )2

β
+

49

14,400

(α− vT )2

β
. (D.102)

But the premise of the sub-subcase is that a+u 1
64

(α−vT )2

β
< crp where crp = uwz here, so (D.102) is nonneg-

ative.

Therefore the expected profit at γ from first taking ad(i) then following ξ̂ is greater than or equal to that

from first taking ad(i′) then following ξ∗∗ conditional on H00. This completes the proof. �

Proof of Corollary 2. The result follows directly from Proposition 2. �

D.3. Supplier Choice When Auditing One Firm

Let γ ∈ Γ and i∈Uγ . We define two thresholds for z:

zp(γ, i) =
u∇(γ, i) + a

uw[u(|Uγ | − |Uγ	i| − 1) + 1]
and zr(γ, i) =

∇(γ, i)− r
uw(|Uγ | − |Uγ	i| − 1)

. (D.103)

Proposition D.3. At nonterminal state γ, suppose the buyer can at most audit (ad or ar) one supplier,

then pp. The optimal decision is

(a) pp if and only if z 6 a+ur
uw

and z 6 zp(γ, i′) for every i′ ∈Uγ;

(b) ar(i) (for any i ∈ Uγ) if and only if z > a+ur
uw

, and z 6 zr(γ, i′) for every i′ ∈ Uγ with an unaudited

dependent in γ and ∇(γ, i′)> r for every i′ ∈Uγ without an unaudited dependent in γ.

(c) ad(i) if and only if z > zp(γ, i), z > zr(γ, i) if i has an unaudited dependent in γ and ∇(γ, i)< r if i

does not have an unaudited dependent in γ, and also i satisfies (D.118).

Proof. Let ξpp be the policy that maps any state in Γ to the action pp. Then for i∈Uγ ,

Ṽ (ξpp, γ,ad(i)) =−a+ (1−u)V (ξpp, γ⊕ i) +uV (ξpp, γ	 i) (D.104)

=−a+ (1−u)(π(γ⊕ i)−uwz|Uγ⊕i|) +u(π(γ	 i)−uwz|Uγ	i|) (D.105)

=−a+ (1−u)[π(γ)−uwz(|Uγ | − 1)] +u(π(γ	 i)−uwz|Uγ	i|) (D.106)
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Ṽ (ξpp, γ,ar(i)) =−a−ur+π(γ⊕ i)−uwz|Uγ⊕i| (D.107)

=−a−ur+π(γ)−uwz(|Uγ | − 1) (D.108)

and

Ṽ (ξpp, γ,pp) = π(γ)−uwz|Uγ |. (D.109)

Note that Ṽ (ξpp, γ,ar(i)) is independent of i.

Therefore Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,ar(i′)) for any i′ ∈Uγ iff

− a+ (1−u)[π(γ)−uwz(|Uγ | − 1)] +u(π(γ	 i)−uwz|Uγ	i|)>−a−ur+π(γ)−uwz(|Uγ | − 1) (D.110)

which is equivalent to

uwz(|Uγ | − |Uγ	i| − 1)>π(γ)−π(γ	 i)− r. (D.111)

If i has no unaudited dependent, i.e., Dg(i)∩Uγ = ∅ where g is the supply network in state γ, then |Uγ |−1 =

|Uγ	i|; (D.111) is equivalent to π(γ)−π(γ	 i)< r. Otherwise if i has at least one unaudited dependent, then

|Uγ | − 1> |Uγ	i|; (D.111) is equivalent to

z >
π(γ)−π(γ	 i)− r
uw(|Uγ | − |Uγ	i| − 1)

. (D.112)

Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,pp) iff

− a+ (1−u)[π(γ)−uwz(|Uγ − 1|)] +u(π(γ	 i)−uwz|Uγ	i|)>π(γ)−uwz|Uγ | (D.113)

which is equivalent to

z >
u(π(γ)−π(γ	 i)) + a

uw[u(|Uγ | − |Uγ	i|) + 1−u]
. (D.114)

Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,ad(i′)) for i′ ∈Uγ iff

− a+ (1−u)[π(γ)−uwz(|Uγ | − 1)] +u(π(γ	 i)−uwz|Uγ	i|)

>−a+ (1−u)[π(γ)−uwz(|Uγ | − 1)] +u(π(γ	 i′)−uwz|Uγ	i′ |) (D.115)

which is equivalent to

π(γ	 i)−uwz|Uγ	i|> π(γ	 i′)−uwz|Uγ	i′ |. (D.116)

Ṽ (ξpp, γ,ar(i))> Ṽ (ξpp, γ,pp) iff

− a−ur+π(γ)−uwz(|Uγ | − 1)>π(γ)−uwz|Uγ | (D.117)

which is equivalent to z > a+ur
uw

.

The optimal decision is pp iff Ṽ (ξpp, γ,pp)> Ṽ (ξpp, γ,ad(i)) and Ṽ (ξpp, γ,pp)> Ṽ (ξpp, γ,ar(i)) for any i∈

Uγ . This gives part (a). The optimal decision is ad(i) iff Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,ar(i′)), Ṽ (ξpp, γ,ad(i))>

Ṽ (ξpp, γ,pp), and Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,ad(i′)) for any i′ ∈Uγ . This gives part (c). The optimal decision

is ar(i) iff Ṽ (ξpp, γ,ar(i))> Ṽ (ξpp, γ,ad(i′)) for any i′ ∈ Uγ and Ṽ (ξpp, γ,ar(i))> Ṽ (ξpp, γ,pp). This gives

part (b). �
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Proposition D.4. At nonterminal state γ, suppose the buyer can audit (ad or ar) at most one supplier,

before proceeding to production (pp). There exist two (possibly coinciding) thresholds z
¯
6 z for penalty z such

that

(a) If z 6 z
¯

the optimal decision is pp;

(b) If z
¯
< z 6 z the optimal decision is ar(i) for any i∈Uγ;

(c) If z > z the optimal decision is ad(i) where i solves

max
i∈Uγ
{uwz(|Uγ | − |Uγ	i|)−∇(γ, i)} (D.118)

Proof. By Proposition D.3 the optimal decision depends on the ordering of three thresholds for z:

a+ur

uw
, z

¯r
(γ) = min{zr(γ, i) : i∈Uγ with unaudited dependent}, z

¯p
(γ) = min

i∈Uγ
zp(γ, i). (D.119)

In the following we enumerate all but one possible orderings of the three thresholds to verify that they are

consistent with the property we describe in Proposition D.4. We then show the remaining one ordering can

never arise. In the following the supplier i in ar(i) can be any i∈Uγ and the supplier i in ad(i) is given by

(D.118).12 We consider two mutually exclusive and collectively exhaustive cases as follows.

(a) First we look at the case that either ∇(γ, i′) < r for some i′ ∈ Uγ without an unaudited dependent,

or a+ur
uw
> z

¯r
(γ). Then by Proposition D.3 ar(i) is never optimal. Therefore the optimal decision is either

pp or ad(i). By Proposition D.3 the optimal decision is pp if and only if z 6
(
a+ur
uw

)
∧ z

¯p
(γ), which implies

the optimal decision is ad(i) if and only if z >
(
a+ur
uw

)
∧ z

¯p
(γ). Setting z

¯
= z =

(
a+ur
uw

)
∧ z

¯p
(γ) establishes the

property Proposition D.4 describes.

(b) Second we look at the case that ∇(γ, i′)> r for every i′ ∈ Uγ without an unaudited dependent, and

a+ur
uw

< z
¯r

(γ). By Proposition D.3 the optimal decision is ar(i) if and only if a+ur
uw

< z 6 z
¯r

(γ). Suppose

a+ur
uw
6 z

¯p
(γ) then the optimal decision is pp if and only if z 6 a+ur

uw
. So setting z

¯
= a+ur

uw
and z = z

¯r
(γ) will

establish the property Proposition D.4 describes. We only need to show that indeed a+ur
uw
6 z

¯p
(γ) under

case (b).

By way of contradiction suppose a+ur
uw

> z
¯p

(γ). It implies that there exists i′′ ∈Uγ such that

zp(γ, i
′′) =

u∇(γ, i′′) + a

uw[u(|Uγ | − |Uγ	i′′ | − 1) + 1]
<
a+ur

uw
. (D.120)

• If i′′ does not have an unaudited dependent in γ, then |Uγ	i′′ |= |Uγ |−1; then (D.120) implies ∇(γ, i′′)<

r, contradicting that∇(γ, i′)> r for every i′ ∈Uγ without an unaudited dependent (in the premise of case (b)).

• If i′′ has an unaudited dependent, then (D.120) implies

∇(γ, i′′)< (a+ur)(|Uγ | − |Uγ	i′′ | − 1) + r. (D.121)

On the other hand, given that i′′ has an unaudited dependent in γ, a+ur
uw
6 z

¯r
(γ) implies

a+ur

uw
6 zr(γ, i

′′) =
∇(γ, i′′)− r

uw(|Uγ | − |Uγ	i′′ | − 1)
(D.122)

which is equivalent to

∇(γ, i′′)− r> (a+ur)(|Uγ | − |Uγ	i′′ | − 1) (D.123)

contradicting (D.121). Therefore under case (b), a+ur
uw
6 z

¯p
(γ). �

12 The identity of supplier i may change as z changes.
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We consider a state γ+ = (g,U) in which there is at least one supplier in each position in tier 2 (majority-

exclusive, minority-exclusive, shared; i.e., ta, tb, tab > 1), all suppliers (including those in tier 1) are unaudited,

and the majority tier-1 firm a has strictly more suppliers than the minority tier-1 firm b (i.e., ta > tb). This

structure allows us to compare all possible auditing choices.

We define the following thresholds used in Proposition D.5:

za|b =
1

16

(α− vT )2

uwβ

1

ta− tb

[(
ta + tab

ta + tab + 1

)2

−
(

tb + tab
tb + tab + 1

)2
]

(D.124)

zb|1 =
(α− vT )2

uwβ

1

tb

[
1

9
Y − 1

16

(
ta + tab

ta + tab + 1

)2
]

(D.125)

za|1 =
(α− vT )2

uwβ

1

ta

[
1

9
Y − 1

16

(
tb + tab

tb + tab + 1

)2
]

(D.126)

where

Y =


[

3(ta− 1) + 3tb + 4tab + 4(ta− 1)tab + 4tbtab + 3(ta− 1)tb + 4t2ab
L(ta− 1, tb, tab)

]2
, if ta 6 2tb + 2tab + 2[

3(ta− 1) + 3(tb + tab) + 3(ta− 1)(tb + tab)

L(ta− 1, tb + tab,0)

]2
, if ta > 2tb + 2tab + 2

. (D.127)

Proposition D.5. At state γ+ suppose the buyer can audit at most one supplier before proceeding to

production (pp). Let z
¯ d

= (za|1∧zb|1)∨z and zd = za|1∨za|b∨z where z is as in Proposition D.4. The optimal

decision is ad(ea) (i.e., auditing and dropping (if noncompliant) an exclusive supplier to firm a) if and only

if z < z 6 z
¯ d

, ad(b) if and only if z
¯ d
< z 6 zd, and ad(a) if and only if z > zd.

Proof. By the proof of Proposition D.3, let i, i′ ∈Uγ , Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,ad(i′)) iff

π(γ	 i)−uwz|Uγ	i|> π(γ	 i′)−uwz|Uγ	i′ |. (D.128)

Since no tier-2 supplier has a dependent in γ, (D.128) implies the buyer should prefer among tier-2 suppliers

to ad a supplier i with the highest π(γ	 i). By Proposition 2 this supplier is a majority-exclusive supplier.

Hence we only need to compare the majority-exclusive supplier 1, firm a, and firm b.

By the structure of supply network g,

|Uγ	a|= |Uγ | − ta− 1 (D.129)

|Uγ	b|= |Uγ | − tb− 1 (D.130)

|Uγ	1|= |Uγ | − 1. (D.131)

By Proposition C.5,

π(γ	a) =
1

16

(α− vT )2

β

(
tb + tab

tb + tab + 1

)2

(D.132)

π(γ	b) =
1

16

(α− vT )2

β

(
ta + tab

ta + tab + 1

)2

(D.133)

π(γ	 1) =
1

9

(α− vT )2

β
Y. (D.134)

One may verify that the buyer prefers ad(a) to ad(b) if and only if z > za|b, the buyer prefers ad(b)

to ad(1) if and only if z > zb|1, and the buyer prefers ad(a) to ad(1) if and only if z > za|1, by plugging

(D.129)–(D.134) into (D.128). By Proposition D.4 when z > ẑ the optimal decision is to ad some supplier.

Proposition D.5 now follows. �



ec26 e-companion to Zhang, Aydin, and Parker: Social Responsibility Auditing in Supply Chain Networks

Appendix E: Corresponding Results When Adopting ABM Model

We show that all our results of the auditing phase hold when we replace our production model with the

corresponding case of the model in Adida et al. (2016) (ABM hereafter) except that our model additionally

captures the difference in the value that a majority-exclusive and a minority-exclusive supplier provide.

Specifically we redefine the production profit π(γ) = π∗c to be the retailer’s profit (πr in the notation of

ABM) in the model in Section 5 of ABM for the case where there is one buyer (retailer) and two tier-1 firms

(intermediaries).

Proposition E.1. The buyer’s production profit is

π∗c =

(
d1− s1

2

)2 |S(2)|I
d2|S(2)|I + s2(I + 1)

(E.1)

where d1, d2, s1, s2 are demand and cost parameters defined in ABM and

I =

{
1− 1

|S(2)|

[
1

2
(ta + tb) +

2

3
tab

]}−1
− 1 (E.2)

if I = 1 or 2 and I = 0 if I = 0.

Proof. This is a direct consequence of Theorem 3 and Proposition 1 in ABM. In particular, when there

are two tier-1 firms (E.2) is derived in the same way as is equation (A17) in ABM. When there is only one

tier-1 firm, by Proposition 1 in ABM and since each tier-2 supplier now serves only one customer, i.e., Ij = 1

for all tier-2 suppliers j,
I

I + 1
=

1

|S(2)|
|S(2)| 1

1 + 1
(E.3)

Therefore I = 1, which coincides with (E.2) by setting tb = tab = 0. �

Remark E.1. By (E.1) and (E.2) any exclusive supplier, whether it supplies firms a or b, carries the

same value to the buyer in π∗c . That is π∗c stays the same however ta and tb vary as long as ta + tb remains

the same.

Corollary E.1. Given supply network g ∈G,

(a) Adding any supplier to g increases the buyer’s production profit π∗c;

(b) Adding a shared supplier to g induces a strictly greater increase in π∗c than adding an exclusive supplier.

Proof. (Part (a)) By (E.1) and algebra

∆1π
∗
c〈ta, tb, tab〉= ∆2π

∗
c〈ta, tb, tab〉

=
9s2(d1− s1)2

2[3d2(ta + tb) + 4d2tab + 6s2][3d2(ta + tb) + 4d2tab + 3d2 + 6s2]
> 0 (E.4)

by Assumption 1 in ABM, and

∆3π
∗
c〈ta, tb, tab〉=

12s2(d1− s1)2

2[3d2(ta + tb) + 4d2tab + 6s2][3d2(ta + tb) + 4d2tab + 4d2 + 6s2]
> 0 (E.5)

by Assumption 1 in ABM.

(Part (b)) By Remark E.1 we only need to show

∆3π
∗
c〈ta, tb, tab〉−∆1π

∗
c〈ta, tb, tab〉> 0 (E.6)
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which is equivalent to

π∗c〈ta, tb, tab + 1〉>π∗c〈ta + 1, tb, tab〉. (E.7)

Now we can equivalently write (E.1) as

π∗c =

(
d1− s1

2

)2 |S(2)|I
(d2|S(2)|+ s2)I + s2

(E.8)

which, with everything else kept constant, is strictly increasing in I. Since

ω≡ 1

|S(2)|

[
1

2
(ta + tb) +

2

3
tab

]
∈ (0,1) (E.9)

by (E.2) I is strictly increasing in ω. Lastly, ω clearly increases strictly more by adding 1 to tab than by

adding 1 to ta, which is to say that (E.7) holds. �

The statements and proofs of our Theorem 3 and Corollary 1 remain the same as in the base model.

Proposition E.2 (decreasing differences of production profit). For any γ ∈ Γ and any i, i′ ∈ Uγ,

i′ /∈Dγ(i),

∇(γ, i′)6∇(γ	 i, i′). (E.10)

Proof. Given Remark E.1 we only need to show each of the following four differences is nonpositive:

∆1π
∗
c〈ta + 1, tb, tab〉−∆1π

∗
c〈ta, tb, tab〉 (E.11)

∆1π
∗
c〈ta, tb, tab + 1〉−∆1π

∗
c〈ta, tb, tab〉 (E.12)

∆3π
∗
c〈ta + 1, tb, tab〉−∆3π

∗
c〈ta, tb, tab〉 (E.13)

∆3π
∗
c〈ta, tb, tab + 1〉−∆3π

∗
c〈ta, tb, tab〉. (E.14)

Using (E.1) by algebra we find that they are respectively equal to

− 1

3d2(ta + tb) + 4d2tab + 6s2
27d2s2(d1− s1)2

[3d2(ta + tb) + 4d2tab + 3d2 + 6s2][3d2(ta + tb) + 4d2tab + 6d2 + 6s2]
(E.15)

− 1

[3d2(ta + tb) + 4d2tab + 6s2][3d2(ta + tb) + 4d2tab + 3d2 + 6s2]

18d2s2(d1− s1)2[6d2(ta + tb) + 8d2tab + 7d2 + 12s2]

[3d2(ta + tb) + 4d2tab + 4d2 + 6s2][3d2(ta + tb) + 4d2tab + 7d2 + 6s2]
(E.16)

− 1

[3d2(ta + tb) + 4d2tab + 6s2][3d2(ta + tb) + 4d2tab + 3d2 + 6s2]

18d2s2(d1− s1)2[6d2(ta + tb) + 8d2tab + 7d2 + 12s2]

[3d2(ta + tb) + 4d2tab + 4d2 + 6s2][3d2(ta + tb) + 4d2tab + 7d2 + 6s2]
(E.17)

− 1

3d2(ta + tb) + 4d2tab + 6s2
48d2s2(d1− s1)2

[3d2(ta + tb) + 4d2tab + 4d2 + 6s2][3d2(ta + tb) + 4d2tab + 8d2 + 6s2]
(E.18)

which are obviously all nonpositive (in fact strictly negative by Assumption 1 in ABM). �
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Theorem E.1. The following policy ξ∗∗ is optimal at any state γ in which every tier-1 firm is vetted: for

any nonterminal state γ ∈ Γ, let i be an LVUS in γ, then

ξ∗∗(γ) =

{
ad(i), if u∇(γ, i) + a< crp

rp, if u∇(γ, i) + a> crp
. (E.19)

Proof. By Proposition E.2 Assumption D.1 holds. Given Remark E.1 Assumption D.2 clearly holds. Then

Theorem E.1 is a direct consequence of Theorem D.1. �

The proofs of Propositions D.3 and D.4 are the same as in our model. I will next state and prove the result

that corresponds to Proposition D.5.

We define the following thresholds used in Proposition E.3:

za|b =
1

uw(ta− tb)

(
d1− s1

2

)2 [
ta + tab

d2(ta + tab) + 2s2
− tb + tab
d2(tb + tab) + 2s2

]
(E.20)

zb|1 =
1

uwtb

(
d1− s1

2

)2
{

1
2
(ta + tb− 1) + 2

3
tab

d2
[
1
2
(ta + tb− 1) + 2

3
tab
]

+ s2
− ta + tab

2[d2(ta + tab) + 2s2]

}
(E.21)

za|1 =
1

uwta

(
d1− s1

2

)2
{

1
2
(ta + tb− 1) + 2

3
tab

d2
[
1
2
(ta + tb− 1) + 2

3
tab
]

+ s2
− tb + tab

2[d2(tb + tab) + 2s2]

}
. (E.22)

Proposition E.3. At state γ+ suppose the buyer can audit at most one supplier before proceeding to

production (pp). Let z
¯ d

= (za|1 ∧ zb|1)∨ z and zd = za|1 ∨ za|b ∨ z where z is as in Proposition 7. The optimal

decisions are ad(ea) and ad(eb) (i.e., auditing and dropping (if noncompliant) an exclusive supplier) if and

only if z < z 6 z
¯ d

, ad(b) if and only if z
¯ d
< z 6 zd, and ad(a) if and only if z > zd.

Proof of Proposition E.3. By the proof of Proposition D.3 let i, i′ ∈Uγ , Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,ad(i′))

iff

π(γ	 i)−uwz|Uγ	i|> π(γ	 i′)−uwz|Uγ	i′ |. (E.23)

Since no tier-2 supplier has a dependent in γ, (E.23) implies the buyer should prefer among tier-2 suppliers

to ad a supplier i with the highest π(γ	 i). By Remark E.1 and Corollary E.1 this supplier is any exclusive

supplier. Hence we only need to compare the majority-exclusive supplier 1, firm a, and firm b.

By the structure of supply network g,

|Uγ	a|= |Uγ | − ta− 1 (E.24)

|Uγ	b|= |Uγ | − tb− 1 (E.25)

|Uγ	1|= |Uγ | − 1. (E.26)

By Proposition E.1,

π(γ	a) =

(
d1− s1

2

)2
tb + tab

d2(tb + tab) + 2s2
(E.27)

π(γ	b) =

(
d1− s1

2

)2
ta + tab

d2(ta + tab) + 2s2
(E.28)

π(γ	 1) =

(
d1− s1

2

)2 1
2
(ta + tb− 1) + 2

3
tab

d2
[
1
2
(ta + tb− 1) + 2

3
tab
]

+ s2
. (E.29)

One may verify that the buyer prefers ad(a) to ad(b) if and only if z > za|b, the buyer prefers ad(b) to ad(1)

if and only if z > zb|1, and the buyer prefers ad(a) to ad(1) if and only if z > za|1, by plugging (E.24)–(E.29)

into (E.23). By Proposition D.4 when z > ẑ the optimal decision is to ad some supplier. Proposition E.3 now

follows. �
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Appendix F: Heterogeneous Penalty Across Tiers: Specification and Results

Assume the buyer incurs a cost of z1 > 0 upon the exposure of a violation at each noncompliant supplier in

tier 1, and a cost of z2 > 0 at each in tier 2. Then by the independence of noncompliance and of the exposure

of violations across suppliers, ζ(γ) = |Uγ ∩S(1)|uwz1 + |Uγ ∩S(2)|uwz2. Denote U (k)
γ =Uγ ∩S(k), k= 1,2.

F.1. Two Subphases of Auditing

Proposition D.1 and its proof remain the same. Proposition D.2 is replaced by the following:

Proposition F.1. Limit the buyer’s actions to auditing and rectifying (ar) unaudited suppliers and pro-

ceeding to production (pp). An optimal auditing policy is the following:

(a) If a+ ur 6 uwz1 and a+ ur 6 uwz2, audit and rectify (ar) all remaining unaudited suppliers in any

sequence, then proceed to production (pp);

(b) If a+ ur 6 uwz1 and a+ ur > uwz2, audit and rectify (ar) all remaining unaudited suppliers in tier

1 in any sequence, then proceed to production (pp);

(c) If a+ ur > uwz1 and a+ ur 6 uwz2, audit and rectify (ar) all remaining unaudited suppliers in tier

2 in any sequence, then proceed to production (pp);

(d) If a+ur > uwz1 and a+ur > uwz2, proceed to production directly (pp).

Furthermore, given γ ∈ Γ,

V ∗(γ) = π(γ)− [(uwz1)∧ (a+ur)]|Uγ ∩S(1)| − [(uwz2)∧ (a+ur)]|Uγ ∩S(2)|. (F.1)

Proof. Given γ ∈ Γ and i∈Uγ , by (2) and the definition of ζ,

Ṽ ∗(γ,pp) = π(γ)− |Uγ ∩S(1)|uwz1− |Uγ ∩S(2)|uwz2. (F.2)

Analogous to the proof of Proposition D.2 we proceed by mathematical induction on the number of unaudited

supplier in the state, |Uγ |. If |Uγ |= 1, let i∈Uγ , then γ⊕ i is a terminal state. By (5),

Ṽ ∗(γ,ar(i)) =−a−ur+V ∗(γ⊕ i) =−a−ur+π(γ⊕ i) =−a−ur+π(γ) (F.3)

since states γ⊕ i and γ have the same underlying supply network, which determines the production profit.

Denote by k the tier that i belongs to, i.e., i ∈ S(k). The buyer chooses ar(i) over pp if and only if

Ṽ ∗(γ,ar(i)) > Ṽ ∗(γ,pp), or −a − ur + π(γ) > π(γ) − uwzk, or a + ur 6 uwzk, confirming the policy in

Proposition F.1. As a consequence V ∗(γ) = π(γ)− (uwzk)∧ (a+ur), confirming (F.1).

By mathematical induction, suppose for any state γ such that |Uγ | = m, V ∗(γ) is given by (F.1). Now

given any state γ such that |Uγ |=m+1, pick arbitrary i∈Uγ , then |Uγ⊕i|=m. Suppose i is in tier k ∈ {1,2}.

Let |Uγ ∩S(1)|=m1 and |Uγ ∩S(2)|=m2. By (5) and (F.1),

Ṽ ∗(γ,ar(i)) =−a−ur+V ∗(γ⊕ i) (F.4)

=−a−ur+π(γ)−m1[(uwz1)∧ (a+ur)]

−m2[(uwz2)∧ (a+ur)] + (uwzk)∧ (a+ur). (F.5)
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Note that by (F.5) suppliers i within the same tier give the same Ṽ ∗(γ,ar(i)). If there are unaudited

suppliers in both tier 1 and tier 2, let i1 ∈Uγ ∩S(1) and i2 ∈Uγ ∩S(2). ar(i1) is preferred to ar(i2) if and

only if Ṽ ∗(γ,ar(i1))> Ṽ ∗(γ,ar(i2)), or by (F.5),

(uwz1)∧ (a+ur)> (uwz2)∧ (a+ur). (F.6)

If a+ur6 uwz1 and a+ur6 uwz2 then the two sides of (F.6) are equal. In this case the buyer is indifferent

between ar(i1) and ar(i2) in state γ. Otherwise if a+ ur > uwz1 or a+ ur > uwz2 let k be the tier with

higher penalty and k′ be the tier with lower penalty, i.e., zk > zk′ , then the buyer prefers ar(ik) to ar(ik′).

For later use, we observe that by (F.5) and (2) the inequality Ṽ ∗(γ,ar(i)) > Ṽ ∗(γ,pp), where i ∈ Uγ ,

expands to

− a−ur+π(γ)−m1[(uwz1)∧ (a+ur)]−m2[(uwz2)∧ (a+ur)] + (uwzk)∧ (a+ur)

> π(γ)−m1(uwz1)−m2(uwz2) (F.7)

which is equivalent to

m1[(uwz1)− (a+ur)]+ +m2[(uwz2)− (a+ur)]+ > [(a+ur)− (uwzk)]
+. (F.8)

Let k and k′ represent the two tiers, i.e., {k, k′} = {1,2}. If only tier k has unaudited suppliers (i.e.,

Uγ ∩ S(k) 6= ∅, Uγ ∩ S(k′) = ∅), then mk′ = 0. Let i ∈ Uγ ∩ S(k). (F.8) reduces to mk[(uwzk)− (a+ ur)]+ >

[(a+ ur)− (uwzk)]
+, which holds if and only if a+ ur 6 uwzk: this confirms the policy in Proposition F.1.

If both tiers have unaudited suppliers (i.e., Uγ ∩ S(k) 6= ∅, Uγ ∩ S(k′) 6= ∅), pick ik ∈ Uγ ∩ S(k) and ik′ ∈

Uγ ∩S(k′).

(a) If a+ ur 6 uwzk and a+ ur 6 uwzk′ , we already know that Ṽ ∗(γ,ar(ik)) = Ṽ ∗(γ,ar(ik′)), and only

need to show Ṽ ∗(γ,ar(ik))> Ṽ ∗(γ,pp) to confirm the optimality of the policy in Proposition F.1. This is

true since now the right-hand side of (F.8) is zero while the left-hand side is always nonnegative.

(b) If a + ur 6 uwzk and a + ur > uwzk′ , then zk > zk′ and from (F.6) we know that Ṽ ∗(γ,ar(ik)) >

Ṽ ∗(γ,ar(ik′)). We only need to show that Ṽ ∗(γ,ar(ik))> Ṽ ∗(γ,pp). This is again true since the right-hand

side of (F.8) reduces to zero.

(c) If a + ur > uwzk and a + ur > uwzk′ , without loss of generality, let zk > zk′ . From (F.6) we know

that Ṽ ∗(γ,ar(ik)) > Ṽ ∗(γ,ar(ik′)). We only need to show that Ṽ ∗(γ,ar(ik)) < Ṽ ∗(γ,pp). Note that now

the right-hand side of (F.8) is strictly positive and the left-hand side is zero: (F.8) cannot be true so indeed

Ṽ ∗(γ,ar(ik))< Ṽ
∗(γ,pp).

By now we have proved the optimality of the policy in Proposition F.1 in state γ. Finally, to complete the

induction step, let i∈Uγ , ik ∈Uγ ∩S(k) and ik′ ∈Uγ ∩S(k′) when they each exist:

V ∗(γ) =



Ṽ ∗(γ,ar(i)), if a+ur6 uw(zk ∧ zk′);

Ṽ ∗(γ,ar(ik)),
if a+ur6 uwzk, a+ur > uwzk′ ,

and Uγ ∩S(k) 6= ∅, where k ∈ {1,2};
Ṽ ∗(γ,pp), otherwise.

(F.9)



e-companion to Zhang, Aydin, and Parker: Social Responsibility Auditing in Supply Chain Networks ec31

=



− a−ur+π(γ)−m1[(uwz1)∧ (a+ur)]

−m2[(uwz2)∧ (a+ur)] + (uwzk)∧ (a+ur),
if a+ur6 uw(zk ∧ zk′);

− a−ur+π(γ)−m1[(uwz1)∧ (a+ur)]

−m2[(uwz2)∧ (a+ur)] + (uwzk)∧ (a+ur),

if a+ur6 uwzk, a+ur > uwzk′ ,

and Uγ ∩S(k) 6= ∅, where k ∈ {1,2};
π(γ)− |Uγ ∩S(1)|uwz1− |Uγ ∩S(2)|uwz2, otherwise.

(F.10)

=



π(γ)−m1[(uwz1)∧ (a+ur)]

−m2[(uwz2)∧ (a+ur)] + (a+ur)− a−ur,
if a+ur6 uw(zk ∧ zk′);

π(γ)−m1[(uwz1)∧ (a+ur)]

−m2[(uwz2)∧ (a+ur)] + (a+ur)− a−ur,

if a+ur6 uwzk, a+ur > uwzk′ ,

and Uγ ∩S(k) 6= ∅, where k ∈ {1,2};
π(γ)− |Uγ ∩S(1)|uwz1− |Uγ ∩S(2)|uwz2, otherwise.

(F.11)

= π(γ)− [(uwz1)∧ (a+ur)]|Uγ ∩S(1)| − [(uwz2)∧ (a+ur)]|Uγ ∩S(2)| (F.12)

which yields (F.1). �

Now instead of auditing every remaining supplier in the rp subphase the buyer distinguishes between tier-1

and tier-2 suppliers and make auditing decisions on them separately. The following replaces Theorem 3:

Theorem F.1. There exists an optimal policy ξ∗ ∈Ξ with the property that auditing decisions are divided

into two subphases:

(a) ad subphase: To audit and drop (ad) some suppliers (or no supplier); followed by

(b) rp subphase:

i. If a+ur6 uwz1 and a+ur6 uwz2, audit and rectify (ar) all remaining unaudited suppliers in any

sequence, then proceed to production (pp);

ii. If a+ur6 uwz1 and a+ur > uwz2, audit and rectify (ar) all remaining unaudited suppliers in tier

1 in any sequence, then proceed to production (pp);

iii. If a+ ur > uwz1 and a+ ur 6 uwz2, audit and rectify (ar) all remaining unaudited suppliers in

tier 2 in any sequence, then proceed to production (pp);

iv. If a+ur > uwz1 and a+ur > uwz2, proceed to production directly (pp).

Proof. The result is a direct consequence of Propositions D.1 and F.1. �

Corollary F.1. At state γ ∈ Γ if the optimal policy ξ∗ is already in the rp subphase,

V ∗(γ) = π(γ)− [(uwz1)∧ (a+ur)]|Uγ ∩S(1)| − [(uwz2)∧ (a+ur)]|Uγ ∩S(2)|. (F.13)

Proof. The result follows (F.1) in Proposition F.1. �

F.2. Optimal Auditing Sequence in Tier 2

Since Theorem 4 only has to do with tier-2 firms, it remains the same other than now z is replaced with z2.

Corollary 2 remains the same since it does not involve penalty.
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F.3. Supplier Choice When Auditing One Firm

Assume δ ≡ z1 − z2 > 0. We consider a state γ where U (1)
γ 6= ∅ and U (2)

γ 6= ∅ (otherwise obviously all results

stay the same by replacing z with zk so that tier k has unaudited suppliers). We also exclude the state γ♦ =

(g♦,U♦) (“♦” read “diamond”) where g♦ = ({a,b},∅,∅,{1}) and U♦ = {a,b,1}, which creates complications,

not insights, due to the sole tier-2 supplier dominating the network claiming both tier-1 firms dependents.

Proposition F.2. Consider a nonterminal state γ 6= γ♦ in which U (1)
γ 6= ∅ and U (2)

γ 6= ∅. Suppose the

buyer can audit at most one supplier before proceeding to production. As δ increases, the optimal action shifts

from proceeding to production (pp) to auditing and dropping (ad) a tier-2 supplier supplier, then either to

auditing and dropping (ad) a tier-1 supplier or to auditing and rectifying (ar) a tier-1 supplier.

Proof. We first calculate the value from each action for comparison later. Let ξpp be the policy that

prescribes pp for every state (i.e., ξpp(γ) = pp,∀γ ∈ Γ). For i∈U (1)
γ and j ∈U (2)

γ ,

Ṽ (ξpp, γ,ad(i)) =−a+ (1−u)V (ξpp, γ⊕ i) +uV (ξpp, γ	 i) (F.14)

=−a+ (1−u)[π(γ)−uwz2(|Uγ | − 1)−uwδ(|U (1)
γ | − 1)] (F.15)

+u[π(γ	 i)−uwz2|Uγ	i| −uwδ|U (1)
γ	i|] (F.16)

Ṽ (ξpp, γ,ad(j)) =−a+ (1−u)V (ξpp, γ⊕ j) +uV (ξpp, γ	 j) (F.17)

=−a+ (1−u)[π(γ)−uwz2(|Uγ | − 1)−uwδ|U (1)
γ |] (F.18)

+u[π(γ	 j)−uwz2|Uγ	j | −uwδ|U (1)
γ	j |] (F.19)

Ṽ (ξpp, γ,ar(i)) =−a−ur+V (ξpp, γ⊕ i) (F.20)

=−a−ur+π(γ)−uwz2(|Uγ | − 1)−uwδ(|U (1)
γ | − 1) (F.21)

Ṽ (ξpp, γ,ar(j)) =−a−ur+V (ξpp, γ⊕ j) (F.22)

=−a−ur+π(γ)−uwz2(|Uγ | − 1)−uwδ|U (1)
γ | (F.23)

Ṽ (ξpp, γ,pp) = π(γ)− ζ(γ) (F.24)

= π(γ)−uwz2|Uγ | −uwδ|U (1)
γ |. (F.25)

By (F.21) and (F.23), Ṽ (ξpp, γ,ar(i))> Ṽ (ξpp, γ,ar(j)), so ar(i) always dominates ar(j) (weakly if δ = 0).

Therefore we do not consider ar(j) as a candidate for the optimal action.

We proceed by characterizing the conditions for each action to be optimal. We then identify the patterns

Proposition F.2 describes.

Condition for pp to be optimal. By (F.25) and (F.21) Ṽ (ξpp, γ,pp)> Ṽ (ξpp, γ,ar(i)) where i ∈ U (1)
γ if

and only if

δ6
a−ur
uw

− z2. (F.26)

By (F.25) and (F.16) Ṽ (ξpp, γ,pp)> Ṽ (ξpp, γ,ad(i)) where i∈U (1)
γ if and only if

π(γ)−uwz2|Uγ | −uwδ|U (1)
γ |>

− a+ (1−u)[π(γ)−uwz2(|Uγ | − 1)−uwδ(|U (1)
γ | − 1)] +u[π(γ	 i)−uwz2|Uγ	i| −uwδ|U (1)

γ	i|] (F.27)
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which, by rearranging terms and noting that a tier-1 firm cannot have a tier-1 dependent so that |U (1)
γ	i|=

|U (1)
γ | − 1, is equivalent to

π(γ)−uwz2|Uγ | −uwδ|U (1)
γ |>

− a+ [π(γ)−uwz2|Uγ | −uwδ|U (1)
γ |] +uwz2 +uwδ−u[π(γ)−uwz2(|Uγ | − 1)−uwδ(|U (1)

γ | − 1)]

+u[π(γ	 i)−uwz2|Uγ	i| −uwδ(|U (1)
γ | − 1)] (F.28)

or

a−uwz2 +u[∇(γ, i)−uwz2(|Uγ | − |Uγ	i| − 1)]> uwδ (F.29)

or

δ6
a+u{∇(γ, i)−wz2[1 +u(|Uγ | − |Uγ	i| − 1)]}

uw
≡ δ(1)d (γ, i). (F.30)

By (F.25) and (F.19) Ṽ (ξpp, γ,pp)> Ṽ (ξpp, γ,ad(j)) where j ∈U (2)
γ if and only if

π(γ)−uwz2|Uγ | −uwδ|U (1)
γ |>

− a+ (1−u)[π(γ)−uwz2(|Uγ | − 1)−uwδ|U (1)
γ |] +u[π(γ	 j)−uwz2|Uγ	j | −uwδ|U (1)

γ	j |] (F.31)

or

π(γ)−uwz2|Uγ | −uwδ|U (1)
γ |>

− a+ [π(γ)−uwz2(|Uγ |)−uwδ|U (1)
γ |] +uwz2−u[π(γ)−uwz2(|Uγ | − 1)−uwδ|U (1)

γ |]

+u[π(γ	 j)−uwz2|Uγ	j | −uwδ|U (1)
γ	j |] (F.32)

or

a+u{∇(γ, j)−wz2[1 +u(|Uγ | − |Uγ	j | − 1)]−uwδ(|U (1)
γ | − |U

(1)
γ	j |)}> 0. (F.33)

For j without an unaudited tier-1 dependent, i.e., |U (1)
γ | − |U

(1)
γ	j |= 0, (F.33) is equivalent to

a+u{∇(γ, j)−wz2[1 +u(|Uγ | − |Uγ	j | − 1)]}> 0. (F.34)

Since |Uγ | − |Uγ	j |> 1, 1 +u(|Uγ | − |Uγ	j | − 1)> 0, which implies (F.34) is equivalent to

z2 6
a+u∇(γ, j)

uw[1 +u(|Uγ | − |Uγ	j | − 1)]
≡ z(2)d (γ, j). (F.35)

For j with an unaudited tier-1 dependent, i.e., |U (1)
γ | − |U

(1)
γ	j |> 0, (F.33) is equivalent to

δ6
a+u{∇(γ, j)−wz2[1 +u(|Uγ | − |Uγ	j | − 1)]}

uw(|U (1)
γ | − |U (1)

γ	j |)
≡ δ(2)d (γ, j). (F.36)

Therefore pp is optimal if and only if

• δ6 a−ur
uw
− z2;

• δ6 δ(1)d (γ, i) for every i∈U (1)
γ ;

• z2 6 z(2)d (γ, j) for every j ∈ U (2)
γ without an unaudited tier-1 dependent; and δ 6 δ(2)d (γ, j) for every

j ∈U (2)
γ with an unaudited tier-1 dependent.
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Condition for ar(i) for any i ∈ U (1)
γ to be optimal. By (F.26) Ṽ (ξpp, γ,ar(i))> Ṽ (ξpp, γ,pp) if and

only if

δ >
a−ur
uw

− z2. (F.37)

Let i′ ∈U (1)
γ . By (F.21) and (F.16) Ṽ (ξpp, γ,ar(i))> Ṽ (ξpp, γ,ad(i′)) if and only if

− a−ur+π(γ)−uwz2(|Uγ | − 1)−uwδ|U (1)
γ |>

− a+ (1−u)[π(γ)−uwz2(|Uγ | − 1)−uwδ(|U (1)
γ | − 1)] +u[π(γ	 i′)−uwz2|Uγ	i′ | −uwδ|U (1)

γ	i′ |] (F.38)

or

−ur>−u[∇(γ, i′)−uwz2(|Uγ | − |Uγ	i′ | − 1)−uwδ(|U (1)
γ | − |U

(1)
γ	i′ | − 1)]. (F.39)

which, since |U (1)
γ | − |U

(1)
γ	i′ |= 1, is equivalent to

− r+∇(γ, i′)> uwz2(|Uγ | − |Uγ	i′ | − 1). (F.40)

For i′ with an unaudited tier-2 dependent, i.e., |Uγ | − |Uγ	i′ | − 1> 0, (F.40) is equivalent to

z2 6
−r+∇(γ, i′)

uw(|Uγ | − |Uγ	i′ | − 1)
≡ z(1)r (γ, i′). (F.41)

For i′ without an unaudited tier-2 dependent, i.e., |Uγ | − |Uγ	i′ | − 1 = 0, (F.40) is equivalent to

∇(γ, i′)> r. (F.42)

Let j ∈U (2)
γ . By (F.21) and (F.19) Ṽ (ξpp, γ,ar(i))> Ṽ (ξpp, γ,ad(j)) if and only if

− a−ur+π(γ)−uwz2(|Uγ | − 1)−uwδ(|U (1)
γ | − 1)>

− a+ (1−u)[π(γ)−uwz2(|Uγ | − 1)−uwδ|U (1)
γ |] +u[π(γ	 j)−uwz2|Uγ	j | −uwδ|U (1)

γ	j |] (F.43)

or

−ur+uwδ>−u[π(γ)−uwz2(|Uγ | − 1)−uwδ|U (1)
γ |] +u[π(γ	 j)−uwz2|Uγ	j | −uwδ|U (1)

γ	j |] (F.44)

or

− r+wδ>−[∇(γ, j)−uwz2(|Uγ | − |Uγ	j | − 1)−uwδ(|U (1)
γ | − |U

(1)
γ	j |)] (F.45)

or

wδ[u(|U (1)
γ | − |U

(1)
γ	j |)− 1]6−r+∇(γ, j)−uwz2(|Uγ | − |Uγ	j | − 1). (F.46)

|U (1)
γ |− |U

(1)
γ	j | is the number of tier-1 dependents of tier-2 supplier j—either 0 or 1 given that γ 6= γ♦. Since

u< 1, this implies u(|U (1)
γ | − |U

(1)
γ	j |)− 1< 0. Hence (F.46) is equivalent to

δ>
−r+∇(γ, j)−uwz2(|Uγ | − |Uγ	j | − 1)

w[u(|U (1)
γ | − |U (1)

γ	j |)− 1]
≡ δr(γ, j). (F.47)

Therefore ar(i) is optimal if and only if

• δ > a−ur
uw
− z2;

• z2 6 z(1)r (γ, i′) for any i′ ∈U (1)
γ with an unaudited tier-2 dependent; ∇(γ, i′)> r for any i′ ∈U (1)

γ without

an unaudited tier-2 dependent; and

• δ> δr(γ, j) for any j ∈U (2)
γ .
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Condition for ad(i) where i∈U (1)
γ to be optimal. By (F.30) Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,pp) if and only

if δ > δ
(1)
d (γ, i).

Let i′ ∈ U (1)
γ . By (F.41), in the case where i has an unaudited tier-2 dependent, Ṽ (ξpp, γ,ad(i)) >

Ṽ (ξpp, γ,ar(i′)) if and only if z2 > z
(1)
r (γ, i). By (F.42), in the case where i does not have an unaudited tier-2

dependent, Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,ar(i′)) if and only if ∇(γ, i)< r.

By (F.16) Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,ad(i′)) if and only if

− a+ (1−u)[π(γ)−uwz2(|Uγ | − 1)−uwδ(|U (1)
γ | − 1)] +u[π(γ	 i)−uwz2|Uγ	i| −uwδ|U (1)

γ	i|]>

− a+ (1−u)[π(γ)−uwz2(|Uγ | − 1)−uwδ(|U (1)
γ | − 1)] +u[π(γ	 i′)−uwz2|Uγ	i′ | −uwδ|U (1)

γ	i′ |] (F.48)

or

u[π(γ	 i)−uwz2|Uγ	i| −uwδ|U (1)
γ	i|]> u[π(γ	 i′)−uwz2|Uγ	i′ | −uwδ|U (1)

γ	i′ |] (F.49)

or

π(γ	 i)−uwz2|Uγ	i| −uwδ|U (1)
γ	i|> π(γ	 i′)−uwz2|Uγ	i′ | −uwδ|U (1)

γ	i′ |. (F.50)

Since the only tier-1 dependent of i or i′ is itself, |U (1)
γ	i|= |U

(1)
γ	i′ |. Hence (F.50) is equivalent to

π(γ	 i)−uwz2|Uγ	i|> π(γ	 i′)−uwz2|Uγ	i′ |. (F.51)

Let j ∈U (2)
γ . By (F.16) and (F.19) Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,ad(j)) if and only if

− a+ (1−u)[π(γ)−uwz2(|Uγ | − 1)−uwδ(|U (1)
γ | − 1)] +u[π(γ	 i)−uwz2|Uγ	i| −uwδ|U (1)

γ	i|]

>−a+ (1−u)[π(γ)−uwz2(|Uγ | − 1)−uwδ|U (1)
γ |] +u[π(γ	 j)−uwz2|Uγ	j | −uwδ|U (1)

γ	j |] (F.52)

or

(1−u)uwδ+u[π(γ	 i)−uwz2|Uγ	i| −uwδ|U (1)
γ	i|]> u[π(γ	 j)−uwz2|Uγ	j | −uwδ|U (1)

γ	j |] (F.53)

or

(1−u)wδ+π(γ	 i)−uwz2|Uγ	i| −uwδ|U (1)
γ	i|> π(γ	 j)−uwz2|Uγ	j | −uwδ|U (1)

γ	j | (F.54)

or

wδ[(1−u) +u(|U (1)
γ	j | − |U

(1)
γ	i|)]> π(γ	 j)−π(γ	 i)−uwz2(|Uγ	j | − |Uγ	i|). (F.55)

Since γ 6= γ♦, |U (1)
γ	j | − |U

(1)
γ	i|> 0. Hence (F.55) is equivalent to

δ>
π(γ	 j)−π(γ	 i)−uwz2(|Uγ	j | − |Uγ	i|)

w[1 +u(|U (1)
γ	j | − |U

(1)
γ	i| − 1)]

≡ δd(γ, i, j). (F.56)

Therefore ad(i) is optimal if and only if

• δ > δ(1)d (γ, i);

• In the case where i has an unaudited tier-2 dependent, z2 > z
(1)
r (γ, i); in the case where i does not have

an unaudited tier-2 dependent, ∇(γ, i)< r;

• π(γ	 i)−uwz2|Uγ	i|> π(γ	 i′)−uwz2|Uγ	i′ | for i′ ∈U (1)
γ ; and

• δ> δd(γ, i, j) for every j ∈U (2)
γ .
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Condition for ad(j) where j ∈ U (2)
γ to be optimal. By (F.35), in the case where j does not have an

unaudited tier-1 dependent, Ṽ (ξpp, γ,ad(j)) > Ṽ (ξpp, γ,pp) if and only if z2 > z
(2)
d (γ, j). By (F.36), in the

case where j has an unaudited tier-1 dependent, Ṽ (ξpp, γ,ad(j))> Ṽ (ξpp, γ,pp) if and only if δ > δ
(2)
d (γ, j).

Let i∈U (1)
γ . By (F.47) Ṽ (ξpp, γ,ad(j))> Ṽ (ξpp, γ,ar(i)) if and only if δ < δr(γ, j).

By (F.56) Ṽ (ξpp, γ,ad(j))> Ṽ (ξpp, γ,ad(i)) if and only if δ < δd(γ, i, j).

Let j′ ∈U (2)
γ . By (F.19) Ṽ (ξpp, γ,ad(j))> Ṽ (ξpp, γ,ad(j′)) if and only if

− a+ (1−u)[π(γ)−uwz2(|Uγ | − 1)−uwδ|U (1)
γ |] +u[π(γ	 j)−uwz2|Uγ	j | −uwδ|U (1)

γ	j |]>

− a+ (1−u)[π(γ)−uwz2(|Uγ | − 1)−uwδ|U (1)
γ |] +u[π(γ	 j′)−uwz2|Uγ	j′ | −uwδ|U (1)

γ	j′ |] (F.57)

or

π(γ	 j)−uwz2|Uγ	j | −uwδ|U (1)
γ	j |> π(γ	 j′)−uwz2|Uγ	j′ | −uwδ|U (1)

γ	j′ |. (F.58)

Therefore ad(j) is optimal if and only if

• In the case where j does not have an unaudited tier-1 dependent, z2 > z
(2)
d (γ, j); in the case where j has

an unaudited tier-1 dependent, δ > δ
(2)
d (γ, j);

• δ < δr(γ, j);
• δ < δd(γ, i, j) for every i∈U (1)

γ ; and

• π(γ	 j)−uwz2|Uγ	j | −uwδ|U (1)
γ	j |> π(γ	 j′)−uwz2|Uγ	j′ | −uwδ|U (1)

γ	j′ | for every j′ ∈U (2)
γ .

Given the above necessary and sufficient condition for each action to be optimal, we make the following

observations about how the buyer’s optimal action changes as δ varies:

(a) Either pp does not arise as an optimal action for any value of δ (if there is j ∈U (2)
γ with an unaudited

tier-1 dependent such that z2 6 z
(2)
d (γ, j)) or pp is optimal for all sufficiently low values of δ (specifically

δ 6 a−ur
uw
− z2, δ 6 δ(1)d (γ, i) for every i ∈ U (1)

γ , and δ 6 δ(2)d (γ, j) for every j ∈ U (2)
γ with an unaudited tier-1

dependent).

(b) Any value of δ that makes ad(j) for some unaudited tier-2 supplier j optimal is greater than any value

of δ that makes pp optimal. (If j does not have an unaudited tier-1 supplier and z2 > z
(2)
d (γ, j), pp does not

arise as optimal for any δ; if j does not have an unaudited tier-1 supplier but z2 6 z
(2)
d (γ, j), ad(j) does not

arise as optimal for any δ; otherwise if j has an unaudited tier-1 supplier then ad(j) being optimal requires

δ > δ
(2)
d (γ, j) yet pp being optimal requires δ6 δ(2)d (γ, j).)

(c) Any value of δ that makes ar(i) for some unaudited tier-1 supplier i optimal is greater than any value

of δ that makes ad(j) for some unaudited tier-2 supplier j optimal. (ar(i) being optimal requires δ> δr(γ, j)

while ad(j) being optimal requires δ < δr(γ, j).)

(d) Any value of δ that makes ad(i) for some unaudited tier-1 supplier i optimal is greater than any

value of δ that makes ad(j) for some unaudited tier-2 supplier j optimal. (ad(i) being optimal requires

δ> δd(γ, i, j) while ad(j) being optimal requires δ < δd(γ, i, j).)

(e) If the parameters make ad(i) for some unaudited tier-1 supplier i optimal, varying δ alone will never

make ar(i′) optimal for any unaudited tier-1 supplier i′. (If i has an unaudited tier-2 dependent, ad(i)

being optimal implies z2 > z(1)r (γ, i)—a condition independent of δ—but ar(i′) being optimal requires the

opposite, i.e., z2 6 z(1)r (γ, i); if i does not have an unaudited tier-2 dependent, ad(i) being optimal implies

∇(γ, i)< r—a condition independent of δ—but ar(i′) being optimal requires the opposite, i.e., ∇(γ, i)> r.)

The above five observations together imply the pattern described in Proposition F.2. �
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Appendix G: Results with Inaccurate Detection in Auditing

We consider an extension in which the audit is not accurate in the sense that it sometimes may not detect

an existing noncompliance at a supplier. (While an audit may fail to uncover a real violation at a noncom-

pliant supplier, it will never falsely identify a violation at a compliant supplier.) Let there be two types of

noncompliant suppliers: one type whose noncompliance will be detected by the audit and one type whose

noncompliance will escape the audit. Let d be the probability that a noncompliant supplier is of the former

type so the noncompliance will be detected by the audit. Inaccurate detection leads to the possibility of a

supplier being noncompliant even having passed an audit. Specifically the probability that a supplier is still

noncompliant after it has passed an audit is

P{noncompliant|passed audit}=
P{noncompliant and passed audit}

P{passed audit}
=

u(1− d)

(1−u) +u(1− d)
≡ û. (G.1)

It is easy to verify that u6 1 implies û6 u. We assume a supplier that has undergone a rectification process

has the same probability of noncompliance û as a supplier that has passed an audit. (In practice a buyer

often deems a supplier’s rectification complete once it passes a followup audit.) Therefore in this extension

each vetted supplier has the same probability of noncompliance û. The expected total penalty from violations

on state γ = (g,U) is

ζ(γ) =wz(û|Sg\U |+u|U |) =wz[û|Sg|+ (u− û)|U |]. (G.2)

Note |Sg\U | is the number of vetted suppliers in γ.

Only the following formulae of expected values differ from the base model: given auditing policy ξ ∈Ξ and

state γ ∈ Γ, and i∈Uγ ,

Ṽ (ξ, γ,ad(i)) =−a+ (1−ud)V (ξ, γ⊕ i) +udV (ξ, γ	 i). (G.3)

Ṽ (ξ, γ,ar(i)) =−a+ (1−ud)V (ξ, γ⊕ i) +ud(−r+V (ξ, γ⊕ i)) (G.4)

=−a−udr+V (ξ, γ⊕ i) (G.5)

and similarly

Ṽ ∗(γ,ad(i)) =−a+ (1−ud)V ∗(γ⊕ i) +udV ∗(γ	 i) (G.6)

Ṽ ∗(γ,ar(i)) =−a+ (1−ud)V ∗(γ⊕ i) +ud(−r+V ∗(γ⊕ i)) (G.7)

=−a−udr+V ∗(γ⊕ i). (G.8)

G.1. The Two Subphases

Proposition G.1. The buyer can be at least as well off by postponing all audit and rectify (ar) actions

to after all audit and drop (ad) actions.

Proof. Let ξ ∈Ξ be such that there exists γ = (g,U)∈ Γ, i∈Uγ , and j ∈Uγ⊕i such that

ξ(γ) = ar(i) and ξ(γ⊕ i) = ad(j). (G.9)



ec38 e-companion to Zhang, Aydin, and Parker: Social Responsibility Auditing in Supply Chain Networks

(If there does not exist such a triple of γ, i, and j then in ξ already all ar actions come after all ad actions.)

We specify a policy ξ′ ∈Ξ otherwise identical to ξ but with the sequence of the above two actions swapped,

namely,

ξ′(γ) = ad(j) (G.10)

ξ′(γ⊕ j) = ar(i) (G.11)

ξ′(γ	 j) =

{
ar(i), if i 6∈Dg(j)

ξ(γ	 j), if i∈Dg(j)
(G.12)

ξ′(γ′) = ξ(γ′), ∀γ′ ∈ Γ\{γ, γ⊕ j, γ	 j}. (G.13)

It suffices to show V (ξ′, γ)> V (ξ, γ).

Now

V (ξ, γ) = Ṽ (ξ, γ,ar(i)) (G.14)

=−a−udr+V (ξ, γ⊕ i) (G.15)

=−a−udr+ Ṽ (ξ, γ⊕ i,ad(j)) (by (G.9)) (G.16)

=−a−udr− a+ (1−ud)V (ξ, γ⊕ i⊕ j) +uV (ξ, γ⊕ i	 j) (by (G.3)) (G.17)

and

V (ξ′, γ) = Ṽ (ξ′, γ,ad(j)) (G.18)

=−a+ (1−ud)V (ξ′, γ⊕ j) +udV (ξ′, γ	 j). (G.19)

There are two cases of i:

• Case 1: i 6∈Dg(j). Then

V (ξ′, γ) =−a+ (1−ud)Ṽ (ξ′, γ⊕ j,ar(i)) +udṼ (ξ′, γ	 j,ar(i)) (G.20)

=−a+ (1−ud)(−a−udr+V (ξ′, γ⊕ j⊕ i))

+ud(−a−udr+V (ξ′, γ	 j⊕ i)) (G.21)

=−a− a−udr+ (1−ud)V (ξ′, γ⊕ j⊕ i) +udV (ξ′, γ	 j⊕ i) (G.22)

Note that ξ′|R+(γ⊕j⊕i) = ξ|R+(γ⊕i⊕j), so V (ξ′, γ⊕ j⊕ i) = V (ξ, γ⊕ i⊕ j). Since i 6∈Dg(j), γ	 j⊕ i= γ⊕ i	 j.
Also, ξ′|R+(γ	j⊕i) = ξ|R+(γ⊕i	j). Hence, V (ξ′, γ	 j⊕ i) = V (ξ, γ⊕ i	 j). Therefore by comparing (G.17) and

(G.22) we conclude V (ξ′, γ) = V (ξ, γ).

• Case 2: i∈Dg(j). Immediately, γ⊕ i	 j = γ	 j.

V (ξ′, γ) =−a+ (1−ud)Ṽ (ξ′, γ⊕ j,ar(i)) +udV (ξ′, γ	 j) (G.23)

=−a+ (1−ud)(−a−udr+V (ξ′, γ⊕ j⊕ i)) +udV (ξ′, γ	 j) (G.24)

=−a− (1−ud)(a+udr) + (1−ud)V (ξ′, γ⊕ j⊕ i) +udV (ξ′, γ	 j). (G.25)

Same as above, since ξ′|R+(γ⊕j⊕i) = ξ|R+(γ⊕i⊕j),

V (ξ′, γ⊕ j⊕ i) = V (ξ, γ⊕ i⊕ j). (G.26)
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Since i∈Dg(j), ξ
′(γ	 j) = ξ(γ	 j). Hence ξ′|R+(γ	j) = ξ|R+(γ	j). By γ⊕ i	 j = γ	 j,

V (ξ, γ⊕ i	 j) = V (ξ, γ	 j) = V (ξ′, γ	 j). (G.27)

Substitute (G.26) and (G.27) into (G.25), then subtract (G.17) to obtain

V (ξ′, γ)−V (ξ, γ) = a+udr− (1−ud)(a+udr) = ud(a+udr)> 0. (G.28)

This completes the proof. Note that the buyer is strictly better off by swapping the actions ar(i) and ad(j)

(as in ξ′) if and only if i∈Dg(j) and ud(a+udr)> 0. �

Proposition G.2. Limit the buyer’s actions to audit and rectify (ar) unaudited suppliers and proceed to

production (pp). The optimal auditing policy is to audit and rectify all unaudited suppliers in any sequence

if a+udr6 (u− û)wz and to proceed to production if a+udr> (u− û)wz. Furthermore, given γ ∈ Γ,

V ∗(γ) = π(γ)− ûwz|Sgγ | − {(a+udr)∧ [(u− û)wz]}|Uγ |. (G.29)

Proof. Given γ ∈ Γ and i∈Uγ , by (2) and the definition of (G.2),

Ṽ ∗(γ,pp) = π(γ)−wz[û|Sgγ | − (u− û)|Uγ |]. (G.30)

We prove the result by mathematical induction on the number of unaudited supplier in the state, |Uγ |. If

|Uγ |= 1, let i∈Uγ , then γ⊕ i is a terminal state. By (G.8),

Ṽ ∗(γ,ar(i)) =−a−udr+V ∗(γ⊕ i) =−a−udr+π(γ⊕ i)− ûwz|Sgγ |=−a−udr+π(γ)− ûwz|Sgγ | (G.31)

since states γ⊕ i and γ have the same underlying supply network, which determines the production profit.

Note Ṽ ∗(γ,ar(i)) is independent of i. ar(i) is preferred to pp iff Ṽ ∗(γ,ar(i))> Ṽ ∗(γ,pp), or (since |Uγ |= 1)

− a−udr+π(γ)− ûwz|Sgγ |>π(γ)−wz[û|Sgγ | − (u− û)] (G.32)

or a+udr < (u− û)wz. Hence,

V ∗(γ) = Ṽ ∗(γ,ar(i))∨ Ṽ ∗(γ,pp) = π(γ)− |Sgγ |(ûwz)− (a+udr)∧ [(u− û)wz]. (G.33)

By mathematical induction, suppose given m∈N+, for any γ′ ∈ Γ such that |Uγ′ |=m,

V ∗(γ′) = π(γ′)− ûwz|Sgγ′ | −m{(a+udr)∧ [(u− û)wz]}. (G.34)

Now let γ ∈ Γ be such that |Uγ |=m+ 1. Pick arbitrary i∈Uγ , then |Uγ⊕i|=m. By (G.8) and (G.34),

Ṽ ∗(γ,ar(i)) =−a−udr+V ∗(γ⊕ i) (G.35)

=−a−udr+π(γ)− ûwz|Sgγ | −m{(a+udr)∧ [(u− û)wz]}. (G.36)

ar(i) is preferred to pp iff Ṽ ∗(γ,ar(i))> Ṽ ∗(γ,pp), or

− a−udr+π(γ)− ûwz|Sgγ | −m{(a+udr)∧ [(u− û)wz]}>π(γ)−wz[û|Sgγ |+ (m+ 1)(u− û)] (G.37)

or

a+udr+m{(a+udr)∧ [(u− û)wz]}<wz(m+ 1)(u− û) (G.38)
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which holds if and only if a+ udr < wz(u− û), as we wanted to show. Finally, to complete the induction

step, note

V ∗(γ) =

Ṽ
∗(γ,pp), if a+udr>wz(u− û)

Ṽ ∗(γ,ar(i)), if a+udr <wz(u− û)
(G.39)

=

{
π(γ)− ûwz|Sgγ | − (m+ 1)(u− û)wz, if a+udr>wz(u− û)

−a−udr+π(γ)− ûwz|Sgγ | −m{(a+udr)∧ [(u− û)wz]}, if a+udr <wz(u− û)
(G.40)

=

{
π(γ)− ûwz|Sgγ | − (m+ 1)(u− û)wz, if a+udr>wz(u− û)

π(γ)− ûwz|Sgγ | − (m+ 1)(a+udr), if a+udr <wz(u− û)
(G.41)

= π(γ)− ûwz|Sgγ | − (m+ 1){(a+udr)∧ [(u− û)wz]}. � (G.42)

Theorem G.1. There exists an optimal policy ξ∗ ∈Ξ with the property that auditing decisions are divided

into two subphases:

(a) ad subphase: To audit and drop (ad) some suppliers (or no supplier); followed by

(b) rp subphase: To audit and rectify (ar) all remaining unaudited suppliers in an arbitrary sequence if

a+udr <wz(u− û); or to proceed to production (pp) if a+udr>wz(u− û).

Proof. The result is a direct consequence of Propositions G.1 and G.2. �

We denote the additional cost associated with each unaudited supplier (relative to a vetted supplier) in

the rp subphase ĉrp ≡ (a+udr)∧ [(u− û)wz].

Corollary G.1. At state γ ∈ Γ, if the optimal policy ξ∗ is already in the rp subphase,

V ∗(γ) = π(γ)− ûwz|Sgγ | − ĉrp|Uγ |. (G.43)

Proof. The result follows (G.29) in Proposition G.2. �

G.2. Optimal Auditing Sequence

When we focus on tier 2, a problem that arises with inaccurate detection is that the dropping of a tier-

2 supplier (call it i) may cause another supplier (i′) to carry additional (vetted) dependents (in tier 1)

compared to before the dropping of i. Even if supplier i′ was not favored for an audit in an earlier state,

it may become favorable in a subsequent step. (We can view this as the breaking down of the decreasing

differences property when we augment the production profit with the “residual penalty” of vetted suppliers

arising from û: supplier i′ may become less valuable (accounting for û) after the dropping of i.)

We propose a fix here (only for Section G.2) that imposes perfect compliance on the tier-1 firms: that is,

they are not at risk of any violation (not even the type captured by probability û). Then, when limiting

auditing to tier 2, we rule out any collateral penalty from dependents whatsoever, thereby retaining the

decreasing differences of the production profit augmented by û.

More generally, given state γ = (g,U)∈ Γ, let Ŝg be the set of suppliers in g that are not perfectly compliant

(i.e., suppliers in Sg\Ŝg are perfectly compliant). Theorem G.1 remains valid, but (G.43) in Corollary G.1

now becomes

V ∗(γ) = π(γ)− ûwz|Ŝgγ | − ĉrp|Uγ |. (G.44)
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Theorem G.2. Under Condition 1 the following policy ξ∗∗ is optimal at any state γ in which every tier-1

firm is vetted (perfectly compliant): for any nonterminal state γ 6= γ1, let i be an LVUS in γ, then

ξ∗∗(γ) =

{
ad(i), if a+ud(∇(γ, i)− ûwz)< ĉrp

rp, if a+ud(∇(γ, i)− ûwz)> ĉrp
. (G.45)

We first identify an optimal policy in a general class of supply networks in Theorem G.3, the proof of

which serves as the basis for the proof of Theorem G.4, an expanded version of Theorem G.2.

Theorem G.3. Let γ0 ∈ Γ be such that for any γ ∈R+(γ0) and i ∈ Uγ, any dependent of i in any state

γ′ ∈R+(γ) is vetted (perfectly compliant). Under Assumptions D.1 and D.2, the following policy ξ∗ is optimal

in every state γ ∈R+(γ0):

ξ∗(γ) =

{
ad(i), if i∈Uγ , a+ud(∇(γ, i)− ûwz)< ĉrp, and ∇(γ, i)6∇(γ, i′),∀i′ ∈Uγ

rp, if a+ud(∇(γ, i)− ûwz)> ĉrp,∀i∈Uγ
. (G.46)

Proof. Let γ ∈ R+(γ0). We prove the result by mathematical induction on the number of unaudited

supplier in the state, |Uγ |. If |Uγ |= 1, let i∈Uγ , then Ṽ ∗(γ,ad(i))> Ṽ ∗(γ,rp) iff

− a+ (1−ud)V ∗(γ⊕ i) +udV ∗(γ	 i)>π(γ)− ûwz|Ŝgγ | − crp (G.47)

iff

− a+ (1−ud)(π(γ⊕ i)− ûwz|Ŝgγ⊕i |) +ud(π(γ	 i)− ûwz|Ŝgγ	i |)>π(γ)− ûwz|Ŝgγ | − crp (G.48)

iff

− a+ud[π(γ	 i)− ûwz(|Ŝgγ | − 1)]>ud(π(γ)− ûwz|Ŝgγ |)− crp (G.49)

iff

− a+ud(∇(γ, i)− ûwz)< crp (G.50)

which is the condition for action ad(i) under ξ∗. Therefore ξ∗ is optimal at γ.

By way of mathematical induction, suppose ξ∗ is optimal for all γ′ ∈ R+(γ0) such that |Uγ′ | 6 k ∈ N+.

Let γ ∈R+(γ0) be such that |Uγ |= k+ 1. We divide the proof of the induction step into two cases based on

(G.46).

Case a (a+ud(∇(γ, i)− ûwz)> ĉrp,∀i∈Uγ). We show that Ṽ ∗(γ,rp)> Ṽ ∗(γ,ad(i)) for any i∈Uγ , thus

proving the optimality of the action rp when u∇(γ, i) + a > crp,∀i ∈ Uγ as Theorem G.3 prescribes. Let

i∈Uγ . We first show two equalities: V ∗(γ⊕ i) = Ṽ ∗(γ⊕ i,rp) and V ∗(γ	 i) = Ṽ ∗(γ	 i,rp).

First consider the state γ⊕ i. Note π(γ⊕ i) = π(γ) and for any i′ ∈Uγ\{i}, π(γ⊕ i	 i′) = π(γ	 i′). Then for

any i′ ∈Uγ⊕i =Uγ\{i},

a+ud(∇(γ⊕ i, i′)− ûwz) = a+ud(π(γ⊕ i)−π(γ⊕ i	 i′)− ûwz)

= a+ud(π(γ)−π(γ	 i′)− ûwz) = a+ud(∇(γ, i′)− ûwz)> crp. (G.51)

Hence by the definition of ξ∗, ξ∗(γ⊕ i) = rp, i.e., ξ∗ prescribes the action rp in state γ⊕ i. But |Uγ⊕i|= k.

By invoking the induction hypothesis (that ξ∗ is optimal at any state γ′ ∈ R+(γ0) in which |Uγ′ |6 k), we

conclude that the action rp is optimal at state γ⊕ i. Therefore V ∗(γ⊕ i) = Ṽ ∗(γ⊕ i,rp).
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Next consider the state γ	 i. Since any dependent of i is perfectly compliant (and thus cannot be unaudited),

Uγ	i =Uγ\{i}. By Assumption D.1, for any i′ ∈Uγ	i,

a+ud(∇(γ	 i, i′)− ûwz)> a+ud(∇(γ, i′)− ûwz) (G.52)

which is greater than or equal to ĉrp for any i′ ∈Uγ by the premise of the current case. Hence ξ∗(γ	 i) = rp.

But |Uγ	i|6 k. By invoking the induction hypothesis (that ξ∗ is optimal at any state γ′ ∈R+(γ0) in which

|Uγ′ |6 k), we conclude that the action rp is optimal in state γ	 i. Therefore V ∗(γ	 i) = Ṽ ∗(γ	 i,rp).

Now

Ṽ ∗(γ,rp) = π(γ)− ûwz|Ŝgγ | − ĉrp|Uγ | (G.53)

= π(γ)− ûwz|Ŝgγ | − ĉrp− ĉrp(|Uγ | − 1) (G.54)

> π(γ)− ûwz|Ŝgγ | − [a+ud(π(γ)−π(γ	 i)− ûwz)]− ĉrp(|Uγ | − 1) (G.55)

=−a+ (1−ud)(π(γ⊕ i)− ûwz|Ŝgγ | − ĉrp|Uγ⊕i|) +ud(π(γ	 i)− ûwz|Ŝgγ | − ĉrp|Uγ	i|) (G.56)

=−a+ (1−ud)Ṽ ∗(γ⊕ i,rp) +udṼ ∗(γ	 i,rp) (G.57)

=−a+ (1−ud)V ∗(γ⊕ i) +udV ∗(γ	 i) (G.58)

= Ṽ ∗(γ,ad(i)) (G.59)

where (G.55) is by the assumption a+ud(π(γ)−π(γ	 i)− ûwz)> ĉrp; (G.56) is by |Uγ⊕i|= |Uγ	i|= |Uγ |−1

(any dependent of an unaudited supplier in γ is perfectly compliant so that γ	i has exactly one less unaudited

supplier than γ); and (G.58) is by V ∗(γ ⊕ i) = Ṽ ∗(γ ⊕ i,rp) and V ∗(γ 	 i) = Ṽ ∗(γ 	 i,rp). Therefore the

action rp is optimal when u∇(γ, i) + a> crp,∀i∈Uγ .

Case b (∃i′ ∈ Uγ such that a + ud(∇(γ, i′) − ûwz) < ĉrp). Let i ∈ Uγ be an LVUS in γ, i.e., ∇(γ, i) 6

∇(γ, j),∀j ∈ Uγ . We first show that Ṽ ∗(γ,ad(i)) > Ṽ ∗(γ,rp), then show that Ṽ ∗(γ,ad(i)) > Ṽ ∗(γ,ad(i′))

for any i′ ∈ Uγ . With these we prove that if i is an LVUS in γ and a+ ud(∇(γ, i)− ûwz) < ĉrp then the

optimal action to take in state γ is ad(i) as Theorem G.3 prescribes. Now

Ṽ ∗(γ,ad(i)) =−a+ (1−ud)V ∗(γ⊕ i) +udV ∗(γ	 i) (G.60)

>−a+ (1−ud)Ṽ ∗(γ⊕ i,rp) +udṼ ∗(γ	 i,rp) (G.61)

=−a+ (1−ud)(π(γ⊕ i)− ûwz|Ŝgγ⊕i | − ĉrp|Uγ⊕i|) +ud(π(γ	 i)− ûwz|Ŝgγ	i | − ĉrp|Uγ	i|)
(G.62)

=−a+π(γ)−ud(π(γ)−π(γ	 i))− (1−ud)ûwz|Ŝgγ | −udûwz(|Ŝgγ | − 1)− ĉrp|Uγ | (G.63)

= π(γ)− ûwz|Ŝgγ | − ĉrp|Uγ | − a−ud∇(γ, i) +udûwz+ ĉrp (G.64)

= Ṽ ∗(γ,rp)− [a+ud(∇(γ, i)− ûwz)− ĉrp] (G.65)

> Ṽ ∗(γ,rp) (G.66)

where (G.61) is by V ∗ being optimal; (G.63) is by π(γ⊕ i) = π(γ); and (G.65) is by the premise of case b.

We next show that Ṽ ∗(γ,ad(i)) > Ṽ ∗(γ,ad(i′)) for any i′ ∈ Uγ . Let i′ ∈ Uγ such that i′ is not symmetric

with i. (If i′ is symmetric with i, clearly Ṽ ∗(γ,ad(i)) = Ṽ ∗(γ,ad(i′)).) Since i is an LVUS in γ ⊕ i′ and by

the premise of case b a+ ud(π(γ ⊕ i′)− π(γ ⊕ i′ 	 i)− ûwz) = a+ ud(π(γ)− π(γ 	 i)− ûwz)< ĉrp, by the
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induction hypothesis, ξ∗(γ ⊕ i′) = ad(i). On the other hand, by Assumption D.2, i is an LVUS in γ 	 i′;

therefore13

ξ∗(γ	 i′) =


ad(i), if a+ud(π(γ	 i′)−π(γ	 i′	 i)− ûwz)< ĉrp

ar(i), if a+ud(π(γ	 i′)−π(γ	 i′	 i)− ûwz)> ĉrp and a+udr < (u− û)wz

pp, if a+ud(π(γ	 i′)−π(γ	 i′	 i)− ûwz)> ĉrp and a+udr> (u− û)wz

. (G.67)

We next look at the three cases in (G.67) separately. In each case we devise a policy ξ̂ so that the buyer’s

expected profit from first taking the action ad(i) and following ξ̂ thereafter is at least as good as the expected

profit from first taking ad(i′) and following the optimal policy ξ∗ thereafter (ξ∗ is optimal thereafter by

the induction hypothesis). That is, Ṽ (ξ̂, γ,ad(i))> Ṽ (ξ∗, γ,ad(i′)). Since Ṽ ∗(γ,ad(i))> Ṽ (ξ̂, γ,ad(i))) and

Ṽ (ξ∗, γ,ad(i′)) = Ṽ ∗(γ,ad(i′)), we must then have Ṽ ∗(γ,ad(i))> Ṽ ∗(γ,ad(i′)) as desired. In each case we

consider the following four events that together form a partition of the sample space:

H11 = {both i and i′ would pass an audit} (G.68)

H10 = {i would pass an audit and i′ would not} (G.69)

H01 = {i would not pass an audit and i′ would} (G.70)

H00 = {neither i nor i′ would pass an audit}. (G.71)

Case b(i) (a+ ud(π(γ 	 i′)− π(γ 	 i′	 i)− ûwz)< ĉrp). Let ξ̂ ∈ Ξ be the policy such that ξ̂(γ ⊕ i) =

ξ̂(γ	 i) = ad(i′) and ξ̂(γ′) = ξ∗(γ′) for any γ′ ∈ Γ\{γ⊕ i, γ	 i}.

Conditional on H11: The path of state transition by taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ⊕ i ad(i′)−−−→ γ⊕ i⊕ i′ (G.72)

while that by taking ad(i′) at state γ then following policy ξ∗ is

γ
ad(i′)−−−→ γ⊕ i′ ad(i)−−−→ γ⊕ i′⊕ i. (G.73)

Note that γ⊕ i⊕ i′ = γ⊕ i′⊕ i and ξ̂|R+(γ⊕i⊕i′) = ξ∗|R+(γ⊕i′⊕i), so the expected profit at γ from first taking

ad(i) then following policy ξ̂ is the same as that from first taking ad(i′) then following ξ∗ conditional on

H11.

Conditional on H10: The path of state transition by taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ⊕ i ad(i′)−−−→ γ⊕ i	 i′ (G.74)

while that by taking ad(i′) at state γ then following policy ξ∗ is

γ
ad(i′)−−−→ γ	 i′ ad(i)−−−→ γ	 i′⊕ i. (G.75)

Note that γ⊕ i	 i′ = γ	 i′⊕ i and ξ̂|R+(γ⊕i	i′) = ξ∗|R+(γ	i′⊕i), so the expected profit at γ from first taking

ad(i) then following policy ξ̂ is the same as that from first taking ad(i′) then following ξ∗ conditional on

H10.

13 If u(π(γ 	 i′)− π(γ 	 i′ 	 i)) + a> crp and a+ ur < uwz, ξ∗ prescribes auditing and rectify (if noncompliant) all
unaudited suppliers in any sequence; here we choose i to audit next.
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Conditional on H01 or H00: Similarly we can show that the expected profit at γ from first taking ad(i)

then following policy ξ̂ is the same as that from first taking ad(i′) then following ξ∗.

Therefore the unconditional expected profit at γ from first taking ad(i) then following policy ξ̂ and that

from first taking ad(i′) then following ξ∗, which are integrals of the respected conditional expected profits,

must be equal; that is Ṽ (ξ̂, γ,ad(i)) = Ṽ (ξ∗, γ,ad(i′)). Therefore

Ṽ ∗(γ,ad(i))> Ṽ (ξ̂, γ,ad(i)) = Ṽ (ξ∗, γ,ad(i′)) = Ṽ ∗(γ,ad(i′)) (G.76)

where the induction hypothesis (that ξ∗ is optimal at any state γ′ ∈ R+(γ0) with |Uγ′ | 6 k) gives the last

equality.

Case b(ii) (a+ ud(π(γ 	 i′)− π(γ 	 i′ 	 i)− ûwz)> ĉrp and a+ udr < (u− û)wz). Let ξ̂ ∈ Ξ be the

policy such that ξ̂(γ⊕ i) = ad(i′), ξ̂(γ	 i) = ar(i′), and ξ̂(γ′) = ξ∗(γ′) for any γ′ ∈ Γ\{γ⊕ i, γ	 i}.
Conditional on H11: Using the same steps as in case b(i) we can show the expected profit at γ from first

taking ad(i) then following ξ̂ is the same as that from first taking ad(i′) then following ξ∗ conditional on

H11.

Conditional on H10: The path of state transition by taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ⊕ i ad(i′)−−−→ γ⊕ i	 i′ (G.77)

while that by taking ad(i′) at state γ then following policy ξ∗ is

γ
ad(i′)−−−→ γ	 i′ ar(i)−−−→ γ	 i′⊕ i. (G.78)

Note that γ⊕ i	 i′ = γ	 i′⊕ i and ξ̂|R+(γ⊕i	i′) = ξ∗|R+(γ	i′⊕i), so the expected profit at γ from first taking

ad(i) then following ξ̂ is the same as that from first taking ad(i′) then following ξ∗ conditional on H10.

Conditional on H01: Similarly we can show that the expected profit at γ from first taking ad(i) then

following policy ξ̂ is the same as that from first taking ad(i′) then following ξ∗.

Conditional on H00: The path of state transition by taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ	 i ar(i′)−−−→ γ	 i⊕ i′ (G.79)

while that by taking ad(i′) at state γ then following policy ξ∗ is

γ
ad(i′)−−−→ γ	 i′ ar(i)−−−→ γ	 i′⊕ i. (G.80)

Since π(γ	 i′⊕ i)−π(γ	 i′⊕ i	 i′′) = π(γ	 i′)−π(γ	 i′	 i′′)> π(γ	 i′)−π(γ	 i′	 i) for any i′′ ∈Uγ	i′⊕i
(the last inequality is because i is an LVUS in γ	 i′, by Assumption D.2), and a+ud(π(γ	 i′)−π(γ	 i′	
i)− ûwz)> ĉrp (premise of case b(ii)), we have a+ud(π(γ	 i′⊕ i)−π(γ	 i′⊕ i	 i′′)− ûwz)> ĉrp. Therefore

ξ∗(γ	 i′⊕ i) = rp. Note that since ξ̂|R+(γ	i⊕i′) = ξ∗|R+(γ	i⊕i′),

V (ξ̂, γ	 i⊕ i′) = V ∗(γ	 i⊕ i′)> Ṽ ∗(γ	 i⊕ i′,rp). (G.81)

On the other hand, since and dependent of i or i′ is perfectly compliant and, in particular, |Uγ	i⊕i′ | =
|Uγ	i′⊕i|,

Ṽ ∗(γ	 i⊕ i′,rp)− Ṽ ∗(γ	 i′⊕ i,rp) = π(γ	 i⊕ i′)−π(γ	 i′⊕ i) = π(γ	 i)−π(γ	 i′)> 0 (G.82)
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Together they imply

V (ξ̂, γ	 i⊕ i′)> Ṽ ∗(γ	 i′⊕ i,rp) = V ∗(γ	 i′⊕ i) (G.83)

where the last equality is because ξ∗(γ 	 i′ ⊕ i) = rp. Therefore the expected profit at γ from first taking

ad(i) then following ξ̂ is greater than or equal to that from first taking ad(i′) then following ξ∗ conditional

on H10.

Therefore the unconditional expected profit at γ from first taking ad(i) then following policy ξ̂ is greater

than or equal to that from first taking ad(i′) then following ξ∗; that is Ṽ (ξ̂, γ,ad(i)) > Ṽ (ξ∗, γ,ad(i′)).

Therefore

Ṽ ∗(γ,ad(i))> Ṽ (ξ̂, γ,ad(i))> Ṽ (ξ∗, γ,ad(i′)) = Ṽ ∗(γ,ad(i′)) (G.84)

where the induction hypothesis gives the last equality.

Case b(iii) (a+ ud(π(γ 	 i′)− π(γ 	 i′ 	 i)− ûwz)> ĉrp and a+ udr > (û− u)wz). Let ξ̂ ∈ Ξ be the

policy such that (1) ξ̂(γ ⊕ i) = ad(i′), (2) for any γ′ ∈R+(γ 	 i) such that i′ ∈ Uγ′ , ξ̂(γ′) = ξ∗(γ′ 	 i′), and

(3) ξ̂(γ′) = ξ∗(γ′) for any other state γ′ (i.e., γ′ ∈ Γ\{γ⊕ i}\{γ′′ ∈R+(γ	 i) : i′ ∈Uγ′′}).

Conditional on H11: Using the same corresponding steps as in case b(i) we can show the expected profit

at γ from first taking ad(i) then following ξ̂ is the same as that from first taking ad(i′) then following ξ∗

conditional on H11.

Conditional on H10: Since i is an LVUS in γ 	 i′, by the premise of case b(iii), any unaudited supplier

i′′ in state γ ⊕ i	 i′ must have a+ ud(∇(γ ⊕ i	 i′, i′′)− ûwz) = a+ ud(∇(γ 	 i′, i′′)− ûwz)> ĉrp, then the

induction hypothesis implies ξ∗(γ⊕ i	 i′) = pp. By the definition of ξ̂, ξ̂(γ⊕ i	 i′) = ξ∗(γ⊕ i	 i′). Therefore

ξ̂(γ⊕ i	 i′) = pp. Then the path of the state transition by taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ⊕ i ad(i′)−−−→ γ⊕ i	 i′ pp−→ . (G.85)

The path of the state transition by taking ad(i′) at state γ then following policy ξ∗ is

γ
ad(i′)−−−→ γ	 i′ pp−→ . (G.86)

Note that π(γ⊕ i	 i′) = π(γ	 i′), so the only difference in the conditional expected profit between the above

two paths is the additional cost a of carrying out one more audit in (G.85) (since i is compliant on H10 it

will not incur any penalty from violation later on).

Conditional on H01: The path of the state transition by taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ	 i (G.87)

while the path of the state transition by taking ad(i′) at state γ then following policy ξ∗ is

γ
ad(i′)−−−→ γ⊕ i′ ad(i)−−−→ γ⊕ i′	 i. (G.88)

Note that the definition of ξ̂ means that the path subsequent to γ 	 i in (G.87) and that subsequent to

γ ⊕ i′ 	 i in (G.88) will be identical except that i′ will remain unaudited in all subsequent states in (G.87)

while it is vetted in (G.88). Since on H01 i
′ is compliant the only difference in the conditional expected profit
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between the above two paths is the additional cost a of carrying out one more audit in (G.88) (since i′ is

compliant on H10, even if unaudited, it will not incur any penalty from violation later on).

Conditional on H00: The path of the state transition by taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ	 i pp−→ (G.89)

where ξ̂(γ 	 i) = ξ∗(γ 	 i	 i′) = pp by the premise of the current case and Assumption D.1 (so that a+

ud(π(γ 	 i	 i′)− π(γ 	 i	 i′ 	 i′′)− ûwz) > ĉrp,∀i′′ ∈ Uγ	i	i′), while the path of the state transition by

taking ad(i′) at state γ then following policy ξ∗ is

γ
ad(i′)−−−→ γ	 i′ pp−→ . (G.90)

Therefore conditional on H00 the expected profit at γ from first taking ad(i) then following ξ̂ is greater than

that from first taking ad(i′) then following ξ∗ by precisely π(γ	 i)−π(γ	 i′)> 0.

Therefore the unconditional expected profit at γ from first taking ad(i) then following policy ξ̂ is greater

than or equal to that from first taking ad(i′) then following ξ∗; that is Ṽ (ξ̂, γ,ad(i)) > Ṽ (ξ∗, γ,ad(i′)).

Therefore

Ṽ ∗(γ,ad(i))> Ṽ (ξ̂, γ,ad(i))> Ṽ (ξ∗, γ,ad(i′)) = Ṽ ∗(γ,ad(i′)) (G.91)

where the induction hypothesis yields the last equality.

To sum up, in all cases b(i)–b(iii), Ṽ ∗(γ,ad(i))> Ṽ ∗(γ,ad(i′)).

ξ∗ is optimal at γ. �

Theorem G.2 is a shortened version of Theorem G.4.

Theorem G.4. Under Condition 1 the following policy ξ∗∗ is optimal at any state γ in which every tier-1

firm is vetted: for any nonterminal state γ 6= γ1, let i be an LVUS in γ, then

ξ∗∗(γ) =

{
ad(i), if a+ud(∇(γ, i)− ûwz)< ĉrp

rp, if a+ud(∇(γ, i)− ûwz)> ĉrp
(G.92)

and for γ1 and i∈Uγ1 ,

ξ∗∗(γ1) =


ad(i), if

1

1 +ud
[a+ud(∇(γ, i)− ûwz)] +

ud

1 +ud
[a+ud(π(γ	 i)− ûwz)]< ĉrp

rp, if
1

1 +ud
[a+ud(∇(γ, i)− ûwz)] +

ud

1 +ud
[a+ud(π(γ	 i)− ûwz)]> ĉrp.

. (G.93)

The policy ξ∗∗ differs from ξ∗ only at state γ1 where Assumption D.1 fails. At state γ1, ξ∗∗ prescribes

ad(i) in a larger region of the parameter space than ξ∗ does, since ξ∗∗ takes into account the fact that if the

buyer drops i, the last remaining unaudited supplier will be even less valuable. The buyer has less incentive

to keep the supply network operating in state γ1 than in states in which decreasing differences hold.

Proof of Theorem G.4. Since we limit to states in which all tier-1 firms are perfectly compliant, (1) by

Proposition 2, Assumption D.2 holds, and (2) any dependent of an unaudited supplier is perfectly compliant.

Under Condition 1, among all states we consider here the only state at which Assumption D.1 fails is γ1,

the induction proof of Theorem G.3 applies directly by replacing ξ∗ with ξ∗∗, with two exceptions: (1) at

γ1 itself, at which state we show the optimality of ξ∗∗ separately, and (2) at state γ2 = (g,U) where g =

({a,b},{1},{3},{2}) and U = {1,2,3}, and if the LVUS, 1, in γ2 satisfies a+ ud(∇(γ2,1)− ûwz)< ĉrp. We

will go on to show why the induction proof still applies in the second case.
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ξ∗∗ is optimal at γ1. Set γ = γ1. Call the two symmetric tier-2 suppliers in γ1 i and i′. To analyze the

decision at γ we first consider the profits in state γ⊕ i and γ	 i. In state γ⊕ i the only unaudited supplier

is i′. The decision is between ad(i′) (with expected profit −a+ (1−ud)(π(γ⊕ i⊕ i′)− 2ûwz) +ud(π(γ⊕ i	

i′)− ûwz)) and rp (with expected profit π(γ⊕ i⊕ i′)− 2ûwz− ĉrp). Therefore

V ∗(γ⊕ i) =


−a+ (1−ud)(π(γ⊕ i⊕ i′)− 2ûwz)

+ud(π(γ⊕ i	 i′)− ûwz) , if a+ud(∇(γ⊕ i, i′)− ûwz)< ĉrp

π(γ⊕ i)− 2ûwz− ĉrp, if a+ud(∇(γ⊕ i, i′)− ûwz)> ĉrp
(G.94)

=


−a+ (1−ud)(π(γ)− 2ûwz)

+ud(π(γ	 i′)− ûwz) , if a+ud(∇(γ⊕ i, i′)− ûwz)< ĉrp

π(γ)− 2ûwz− ĉrp, if a+ud(∇(γ⊕ i, i′)− ûwz)> ĉrp
. (G.95)

Similary, in state γ 	 i the only unaudited supplier is i′. The decision is between ad(i′) (with expected

profit −a+ (1−ud)(π(γ	 i⊕ i′)− ûwz)) and rp (with expected profit π(γ	 i⊕ i′)− ûwz− ĉrp). Therefore

V ∗(γ	 i) =

{−a+ (1−ud)(π(γ	 i⊕ i′)− ûwz), if a+ud(π(γ	 i⊕ i′)− ûwz)< ĉrp

π(γ	 i⊕ i′)− ûwz− ĉrp, if a+ud(π(γ	 i⊕ i′)− ûwz)> ĉrp
(G.96)

=

{−a+ (1−ud)(π(γ	 i)− ûwz), if a+ud(π(γ	 i⊕ i′)− ûwz)< ĉrp

π(γ	 i)− ûwz− ĉrp, if a+ud(π(γ	 i⊕ i′)− ûwz)> ĉrp
. (G.97)

By Proposition C.5 we algebraically verify that

π(γ)−π(γ	 i′)>π(γ	 i′) = π(γ	 i) (G.98)

(which is how Assumption D.1 is violated). By (G.95) and (G.97) we obtain

Ṽ ∗(γ,ad(i)) =−a+ (1−ud)V ∗(γ⊕ i) +udV ∗(γ	 i) (G.99)

=



−2a+ (1−ud)[(1−ud)(π(γ)− 2ûwz)
+ud(π(γ	 i′)− ûwz)]

+ud(1−ud)(π(γ	 i)− ûwz),
if a+ud(∇(γ, i′)− ûwz)< ĉrp

−a+ (1−ud)(π(γ)− 2ûwz− ĉrp)
+ud[−a+ (1−ud)(π(γ	 i)− ûwz)], if

a+ud(π(γ	 i)− ûwz)< ĉrp
6 a+ud(δ(γ, i′)− ûwz)

−a+ (1−ud)(π(γ)− 2ûwz− ĉrp)
+ud(π(γ	 i)− ûwz− ĉrp),

if a+ud(π(γ	 i)− ûwz)> ĉrp

(G.100)

=


−2a+ (1−ud)2(π(γ)− 2ûwz)
+2ud(1−ud)(π(γ	 i)− ûwz), if a+ud(∇(γ, i′)− ûwz)< ĉrp

−a+ (1−ud)(π(γ)− 2ûwz− ĉrp)
+ud[−a+ (1−ud)(π(γ	 i)− ûwz)], if

a+ud(π(γ	 i)− ûwz)< ĉrp
6 a+ud(δ(γ, i′)− ûwz)

−a− ĉrp + (1−ud)(π(γ)− 2ûwz) +ud(π(γ	 i)− ûwz), if a+ud(π(γ	 i)− ûwz)> ĉrp

. (G.101)

On the other hand Ṽ ∗(γ,rp) = π(γ) − ûwz|Ŝgγ | − ĉrp|Uγ | = π(γ) − 2ûwz − 2ĉrp. Hence Ṽ ∗(γ,ad(i)) >

Ṽ ∗(γ,rp) if and only if one of the following three (mutually exclusive) conditions holds:

(a) a + ud(∇(γ, i′) − ûwz) < ĉrp and −2a + (1 − ud)2(π(γ) − 2ûwz) + 2ud(1 − ud)(π(γ 	 i′) − ûwz) >

π(γ)− 2ûwz− 2ĉrp;

(b) a+ud(π(γ	 i)− ûwz)< ĉrp 6 a+ud(∇(γ, i′)− ûwz) and −a+ (1−ud)(π(γ)− 2ûwz− ĉrp +ud[−a+

(1−ud)(π(γ	 i)− ûwz)]>π(γ)− 2ûwz− 2ĉrp;

(c) a + ud(π(γ 	 i) − ûwz) > ĉrp and −a − ĉrp + (1 − ud)(π(γ) − 2ûwz) + ud(π(γ 	 i) − ûwz) > π(γ) −

2ûwz− 2ĉrp.
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In (a), the second inequality is equivalent to

2[a+ud(∇(γ, i′)− 2ûwz)]− (ud)2[(π(γ)−π(γ	 i′))−π(γ	 i′)]< 2ĉrp (G.102)

which is implied by the first inequality in (a) and (G.98). So (a) can be simplified to just the first inequality

a+ud(∇(γ, i′)− ûwz)< ĉrp. In (b), the last inequality is equivalent to

[a+ud(∇(γ, i)− ûwz)] +ud(a+ud(π(γ	 i)− ûwz))< (1 +ud)ĉrp (G.103)

or
1

1 +ud
[a+ud(∇(γ, i)− ûwz)] +

ud

1 +ud
[a+ud(π(γ	 i)− ûwz)]< ĉrp. (G.104)

Note that (G.104) and the second inequality ĉrp 6 a+ ud(∇(γ, i′)− ûwz) implies the first inequality a+

ud(π(γ	 i)− ûwz)< ĉrp. So (b) can be simplified to

1

1 +ud
[a+ud(∇(γ, i)− ûwz)] +

ud

1 +ud
[a+ud(π(γ	 i)− ûwz)]< ĉrp 6 a+ud(∇(γ, i′)− ûwz). (G.105)

In (c), the second inequality is equivalent to

a+ud(∇(γ, i)− ûwz)< ĉrp (G.106)

directly contradicting the first inequality; (c) can never hold. Therefore that one of the above three conditions

holds is equivalent to that one of the following two conditions holds:

(a) a+ud(∇(γ, i′)− ûwz)< ĉrp;

(b) 1
1+ud

[a+ud(∇(γ, i)− ûwz)] + ud
1+ud

[a+ud(π(γ	 i)− ûwz)]< ĉrp 6 a+ud(∇(γ, i′)− ûwz)

which by (G.98) is equivalent to just

1

1 +ud
[a+ud(∇(γ, i)− ûwz)] +

ud

1 +ud
[a+ud(π(γ	 i)− ûwz)]< ĉrp. (G.107)

This shows the optimality of ξ∗∗ at γ1 as in (G.93).

ξ∗∗ is optimal at γ2 The only case to show is when the LVUS i of γ2 satisfies a+ud(∇(γ2, i)− ûwz)< ĉrp.

The proof is analogous to case b in the proof of Theorem G.3 by replacing ξ∗ with ξ∗∗; here we only point

out the differences:

• Since now γ = γ2 and i′ is the shared supplier in γ2, γ	 i′ = γ1. Hence by the induction hypothesis

ξ∗∗(γ	 i′) =


ad(i), if F < crp;

ar(i), if F > crp and a+udr < (u− û)wz;

pp, if F > crp and a+udr> (u− û)wz;

(G.108)

where F = 1
1+ud

[a+ ud(∇(γ 	 i′, i)− ûwz)] + ud
1+ud

[a+ ud(π(γ 	 i′ 	 i)− ûwz)]. We redefine the three sub-

cases b(i), b(ii), and b(iii) in the proof by the three cases for ξ∗∗(γ	 i′) in (G.108) (i.e., replace a+ud(∇(γ	

i′, i)− ûwz) in the original condition for each subcase by F ).

• In subcases b(ii) and b(iii), owing to (G.98),

∇(γ1, i
′)>∇(γ1	 i, i′). (G.109)

F > crp implies a+ud(∇(γ	 i′, i)− ûwz)> ĉrp.
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• In subcase b(iii) (F > ĉrp and a+ udr > (u− û)wz) conditional on H00 the path of state transition by

taking ad(i) at state γ then following policy ξ̂ is

γ
ad(i)−−−→ γ	 i (G.110)

while the path of state transition by taking ad(i′) at state γ then following policy ξ∗∗ is

γ
ad(i′)−−−→ γ	 i′ pp−→ . (G.111)

Here by the definition of ξ̂ and the induction hypothesis one of two actions could be taken subsequent to

(G.110) (π(γ	 i	 i′) = 1
64

(α−vT )2

β
by Proposition C.5):

a. If a+ud(π(γ	 i	 i′)− ûwz) = a+ud
(

1
64

(α−vT )2

β
− ûwz

)
> ĉrp, then ξ̂(γ	 i) = ξ∗∗(γ	 i	 i′) = pp;

b. If a+ ud(π(γ 	 i	 i′)− ûwz) = a+ ud
(

1
64

(α−vT )2

β
− ûwz

)
< ĉrp, then ξ̂(γ 	 i) = ξ∗∗(γ 	 i	 i′) =

ad(i′′) where i′′ is the only supplier in Uγ	i	i′ .

In sub-subcase (b)(iii)a the original proof applies. In sub-subcase (b)(iii)b following (G.110) the action is

ad(i′′) with two possible consequences: that i′′ passes the audit leading to γ 	 i⊕ i′′ and that i′′ fails the

audit leading to γ 	 i	 i′′. Note that in either case the definition of ξ̂ prescribes pp afterward. Therefore,

the expected profit subsequent to γ	 i in (G.110) is

− a+ (1−ud)(π(γ	 i⊕ i′′)− ûwz) +udπ(γ	 i	 i′′)−wz

=−a+

[
(1−ud)

25

576
+ud

1

36

]
(α− vT )2

β
− (1−ud)ûwz−wz (G.112)

where the −wz comes from that in event H00 we know i′ is noncompliant and the equality results from

substituting the values of the production profits according to Proposition C.5. On the other hand the expected

profit subsequent to γ	 i′ in (G.111) is

π(γ	 i′)−uwz−wz =
1

25

(α− vT )2

β
−uwz−wz (G.113)

where the −uwz is due to i′′ remaining unaudited, the −wz is due to i being noncompliant, and the equality

results from substituting the value of the production profit according to Proposition C.5. The difference

between (G.112) and (G.113) is equal to

(u− û)wz−
[
a+ud

(
1

64

(α− vT )2

β
− ûwz

)]
+

49

14,400

(α− vT )2

β
. (G.114)

But the premise of sub-subcase (b)(iii)b is that a+ud
(

1
64

(α−vT )2

β
− ûwz

)
< ĉrp and a premise of subcase b(iii)

is a+udr> (u− û)wz, implying ĉrp = (û−u)wz, so (G.114) is positive.

Therefore the expected profit at γ from first taking ad(i) then following ξ̂ is greater than or equal to that

from first taking ad(i′) then following ξ∗∗ conditional on H00. This completes the proof. �

Corollary 2 holds exactly as in the base model.
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G.3. Supplier Choice When Auditing One Firm

Let γ ∈ Γ and i∈Uγ . We revise the definitions of the two thresholds zp(γ, i) and zr(γ, i) for z as

zp(γ, i) =
a+ud∇(γ, i)

w{ud[û(|Sgγ | − |Sgγ	i |) + (u− û)(|Uγ | − |Uγ	i| − 1)] + (u− û)]}
(G.115)

zr(γ, i) =
∇(γ, i)− r

w[(u− û)(|Uγ | − |Uγ	i| − 1) + û(|Sgγ | − |Sgγ	i |)]
. (G.116)

Proposition G.3. At nonterminal state γ, suppose the buyer can at most audit (ad or ar) one supplier,

then pp. The optimal decision is

(a) pp if and only if z 6 a+udr
w(u−û) and z 6 zp(γ, i′) for every i′ ∈Uγ;

(b) ar(i) (for any i∈Uγ) if and only if z > a+udr
w(u−û) , and z 6 zr(γ, i′) for every i′ ∈Uγ.

(c) ad(i) if and only if z > zp(γ, i), z > zr(γ, i) and i solves

max
i∈Uγ

{
π(γ	 i)−wz

[
û|Sgγ	i |+ (u− û)|Uγ	i|

]}
. (G.117)

Proof. Let ξpp be the policy that maps any state in Γ to the action pp. Then for i∈Uγ ,

Ṽ (ξpp, γ,ad(i)) =−a+ (1−ud)V (ξpp, γ⊕ i) +udV (ξpp, γ	 i) (G.118)

=−a+ (1−ud)(π(γ⊕ i)−wz[û|Sgγ⊕i |+ (u− û)|Uγ⊕i|)

+ud{π(γ	 i)−wz[û|Sγγ	i |+ (u− û)|Uγ	i|)]} (G.119)

=−a+ (1−ud)(π(γ)−wz[û|Sgγ |+ (u− û)|Uγ | − 1)

+ud{π(γ	 i)−wz[û|Sgγ	i |+ (u− û)|Uγ	i|)]} (G.120)

Ṽ (ξpp, γ,ar(i)) =−a−udr+π(γ⊕ i)−wz(û|Sgγ⊕i |+ (u− û)|Uγ⊕i|) (G.121)

=−a−udr+π(γ)−wz[û|Sgγ |+ (u− û)(|Uγ | − 1)] (G.122)

and

Ṽ (ξpp, γ,pp) = π(γ)−wz[û|Sgγ |+ (u− û)|Uγ |]. (G.123)

Note that Ṽ (ξpp, γ,ar(i)) is independent of i.

Therefore Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,ar(i′)) for any i′ ∈Uγ iff

− a+ (1−ud){π(γ)−wz[û|Sgγ	i |+ (u− û)(|Uγ | − 1)]}+ud{π(γ	 i)−wz[û|Sgγ	i |+ (u− û)|Uγ	i|]}

>−a−udr+π(γ)−wz[û|Sgγ |+ (u− û(|Uγ | − 1)] (G.124)

which is equivalent to

wz[û(|Sgγ | − |Sgγ	i |+ (u− û)(|Uγ | − |Uγ	i| − 1)]>∇(γ, i)− r (G.125)

or z > zr(γ, i).

Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,pp) iff

− a+ (1−ud)(π(γ)−wz[û|Sgγ |+ (u− û)|Uγ | − 1) +ud{π(γ	 i)−wz[û|Sgγ	i |+ (u− û)|Uγ	i|)]}

>π(γ)−wz[û|Sgγ |+ (u− û)|Uγ |] (G.126)
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which is equivalent to

uw{ud[û(|Sgγ | − |Sgγ	i |) + (u− û)(|Uγ | − |Uγ	i|)] + (1−ud)(u− û)}>a+ud∇(γ, i) (G.127)

or z > zp(γ, i).

Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,ad(i′)) for i′ ∈Uγ iff

− a+ (1−ud)(π(γ)−wz[û|Sgγ |+ (u− û)|Uγ | − 1) +ud{π(γ	 i)−wz[û|Sgγ	i |+ (u− û)|Uγ	i|)]}

>−a+ (1−ud)(π(γ)−wz[û|Sgγ |+ (u− û)|Uγ | − 1) +ud{π(γ	 i′)−wz[û|Sgγ	i′ |+ (u− û)|Uγ	i′ |)]}
(G.128)

which is equivalent to

π(γ	 i)−wz[û|Sgγ	i |+ (u− û)|Uγ	i|)]> π(γ	 i′)−wz[û|Sgγ	i′ |+ (u− û)|Uγ	i′ |)]. (G.129)

Ṽ (ξpp, γ,ar(i))> Ṽ (ξpp, γ,pp) iff

− a−udr+π(γ)−wz[û|Sgγ |+ (u− û)(|Uγ | − 1)]>π(γ)−wz[û|Sgγ |+ (u− û)|Uγ |] (G.130)

which is equivalent to z > a+udr
w(u−û) .

The optimal decision is pp iff Ṽ (ξpp, γ,pp)> Ṽ (ξpp, γ,ad(i)) and Ṽ (ξpp, γ,pp)> Ṽ (ξpp, γ,ar(i)) for any i∈

Uγ . This gives part (a). The optimal decision is ad(i) iff Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,ar(i′)), Ṽ (ξpp, γ,ad(i))>

Ṽ (ξpp, γ,pp), and Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,ad(i′)) for any i′ ∈Uγ . This gives part (c). The optimal decision

is ar(i) iff Ṽ (ξpp, γ,ar(i))> Ṽ (ξpp, γ,ad(i′)) for any i′ ∈ Uγ and Ṽ (ξpp, γ,ar(i))> Ṽ (ξpp, γ,pp). This gives

part (b). �

Proposition G.4. At nonterminal state γ, suppose the buyer can audit (ad or ar) at most one supplier,

before proceeding to production (pp). There exist two (possibly coinciding) thresholds z
¯
6 z for penalty z such

that

(a) If z 6 z
¯

the optimal decision is pp;

(b) If z
¯
< z 6 z the optimal decision is ar(i) for any i∈Uγ;

(c) If z > z the optimal decision is ad(i) where i solves (G.117).

Proof. By Proposition G.3 the optimal decision depends on the ordering of three thresholds for z:

a+udr

w(u− û)
, z

¯r
(γ)≡min

i∈Uγ
zr(γ, i), z

¯p
(γ)≡min

i∈Uγ
zp(γ, i). (G.131)

In the following we enumerate all but one possible orderings of the three thresholds and verify that they are

consistent with the property we describe in Proposition G.4. We then show the remaining one ordering can

never arise. In the following the supplier i in ar(i) can be any i∈Uγ and the supplier i in ad(i) is given by

(G.117). (The identity of supplier i may change as z changes.) We consider two cases as follows:

(a) a+udr
w(u−û) > z¯r

(γ). Then by Proposition G.3 ar(i) is never optimal. Therefore the optimal decision is

either pp or ad(i). By Proposition G.3 the optimal decision is pp if and only if z 6
(
a+udr
w(u−û)

)
∧ z

¯p
(γ), which

implies the optimal decision is ad(i) if and only if z >
(
a+udr
w(u−û)

)
∧ z

¯p
(γ). Setting z

¯
= z =

(
a+udr
w(u−û)

)
∧ z

¯p
(γ)

establishes the property Proposition G.4 describes.
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(b) a+udr
w(u−û) < z

¯r
(γ). By Proposition G.3 the optimal decision is ar(i) if and only if a+udr

w(u−û) < z 6 z
¯r

(γ).

Suppose a+udr
w(u−û) 6 z¯p

(γ) then the optimal decision is pp if and only if z 6 a+udr
w(u−û) . So setting z

¯
= a+udr

w(u−û)

and z = z
¯r

(γ) will establish the property Proposition G.4 describes. We only need to show that indeed

a+ur
uw
6 z

¯p
(γ) under case (b).

By way of contradiction suppose a+ur
uw

> z
¯p

(γ). It implies that there exists i′′ ∈Uγ such that

zp(γ, i
′′) =

a+ud∇(γ, i′′)

w{ud[û(|Sgγ | − |Sgγ	i′′ |) + (u− û)(|Uγ | − |Uγ	i′′ | − 1)] + (u− û)]}
<

a+udr

w(u− û)
. (G.132)

On the other hand a+udr
w(u−û) 6 z¯r

(γ) implies

a+udr

w(u− û)
6 zr(γ, i

′′) =
∇(γ, i′′)− r

w[(u− û)(|Uγ | − |Uγ	i′′ | − 1) + û(|Sgγ | − |Sgγ	i′′ |)]
. (G.133)

Let M1 = a+ udr, N1 = w(u− û), M2 = ud(∇(γ, i)− r), and N2 = udw[û(|Sgγ | − |Sgγ	i′′ |) + (u− û)(|Uγ | −

|Uγ	i′′ |− 1)]. Then a+udr
w(u−û) = M1

N1
, zr(γ, i

′′) = M2

N2
, and zp(γ, i

′′) = M1+M2

N1+N2
. Since N1,N2 > 0 and M1

N1
= a+udr

w(u−û) <

zr(γ, i
′′) = M2

N2
, it must hold that M1

N1
< M1+M2

N1+N2
< M2

N2
, i.e., a+udr

w(u−û) < zp(γ, i
′′) < zr(γ, i

′′), contradicting

(G.132). �

We consider a state γ+ = (g,U) in which there is at least one supplier in each position in tier 2 (majority-

exclusive, minority-exclusive, shared; i.e., ta, tb, tab > 1), all suppliers (including those in tier 1) are unaudited,

and the majority tier-1 firm a has strictly more suppliers than the minority tier-1 firm b (i.e., ta > tb). This

structure allows us to compare all possible auditing choices. In Proposition G.5 the thresholds za|b, zb|1, and

za|1 are identical to those in Proposition D.5.

Proposition G.5. At state γ+ suppose the buyer can audit at most one supplier before proceeding to

production (pp). Let z
¯ d

= (za|1∧zb|1)∨z and zd = za|1∨za|b∨z where z is as in Proposition G.4. The optimal

decision is ad(ea) (i.e., auditing and dropping (if noncompliant) an exclusive supplier to firm a) if and only

if z < z 6 z
¯ d

, ad(b) if and only if z
¯ d
< z 6 zd, and ad(a) if and only if z > zd.

Proof. By the proof of Proposition G.3, let i, i′ ∈Uγ , Ṽ (ξpp, γ,ad(i))> Ṽ (ξpp, γ,ad(i′)) iff

π(γ	 i)−wz[û|Sgγ	i |+ (u− û)|Uγ	i|]> π(γ	 i′)−wz[û|Sgγ	i′ |+ (u− û)|Uγ	i′ |]. (G.134)

Since in γ+, |Sgγ	i | = |Uγ	i|, (G.134) is equivalent to (D.128). Therefore the rest of the proof of Proposi-

tion G.5 is identical to the proof of Proposition D.5. �

Proposition G.6. Consider a nonterminal state where the buyer can audit at most one supplier before

proceeding to production. As penalty z increases, the optimal action shifts from pp to ar(i) (where i is

any unaudited supplier) to ad(i) (where i is a certain unaudited supplier). Further, if every supplier in the

network is unaudited (and there is at least one supplier in each position in tier 2, and the majority tier-1

firm a has strictly more suppliers than the minority tier-1 firm b), within the interval of z where ad(i) is

optimal, as z increases, the supplier i to audit shifts from ea to b to a.

Proof. Proposition G.6 is a summary of Propositions G.4 and G.5. �
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Appendix H: The Production Profit Function Approach with General Supply
Networks

We consider general supply networks without any restrictions over tiers or the number of suppliers within

any tier. To handle the generality of the network we abstract away a specific model of production but

instead adopt an abstract production profit function that encapsulates any underlying production activity.

It represents the profit the buyer makes from production on a given supply network.

H.1. Model

H.1.1. Supply Network We model a general supply network with a single buyer and any finite number

of suppliers. Each firm has at least one upstream supplier, except for raw materials suppliers. Every supplier

in the network has at least one downstream customer which is either the buyer or another supplier. We do

not impose any restrictions on the supply relationships between firms. For instance a supplier may sell to a

customer but also directly to this customer’s own customer at the same time. All material flows eventually

end at the buyer.

We represent the supply network as a directed graph g= (Wg,Eg), where the set of vertices Wg represents

the firms (the buyer and suppliers) in the supply network and the set of arcs Eg represents the supply

relationships between the firms. The direction of each arc in Eg represents the the flow of the goods: for i, j ∈

Wg, ji∈Eg means “j supplies i”. We denote the buyer by c∈Wg and the set of suppliers by Sg =Wg\{c}.

The buyer c is reachable from any i ∈ Sg. Each supplier i has outdegree d+g (i)> 0. We denote G the set of

all supply networks.

For i, j ∈ Sg, we call j a dependent of i in g if j solely relies on i to supply the buyer, i.e., i is on every

directed path from a raw material supplier to the buyer c that traverses j in g. Denote Dg(i) the set

of dependents of i in g. A dependent j of i may lie upstream or downstream from i. Two suppliers may

simultaneously be dependents of each other. Every supplier is a dependent of itself, i.e., i ∈Dg(i),∀i ∈ Sg.

We shall omit the subscript “g” whenever there is no risk of confusion.

H.1.2. Auditing We model the auditing phase as a Markov decision process for the buyer. A state

consists of a supply network and the auditing status of each supplier (unaudited or vetted). Specifically a state

is a tuple γ = (gγ ,Uγ) where gγ = (Wgγ ,Egγ ) is a supply network and Uγ ⊆ Sgγ is the set of suppliers that are

currently unaudited. We omit the subscript “γ” whenever doing so causes no confusion. Any supplier i∈ Sg\U

is vetted. The state space is Γ = {(g,U) : g ∈ G,U ⊆ Sg}. The terminal states ΓT are the supply networks

with no more unaudited suppliers, ΓT = {γ = (g,U)∈ Γ :U = ∅}.

As in our main model, to facilitate the formulation of the dynamic program, we define two operators that

will be used when updating the state. Let Z = {(γ, i) : γ ∈ Γ, i ∈ Uγ} be the set of pairs of a state and an

unaudited supplier (in that state). The first mapping ⊕ : Z→ Γ changes a supplier from an unaudited to a

vetted status, i.e., given state γ and unaudited supplier i in γ, γ⊕ i is the state otherwise identical to γ but

with a vetted i.14 The second mapping 	 :Z→ Γ removes a supplier along with its dependents from a state,

14 Given γ = (g,U)∈ Γ and i∈Uγ , γ⊕ i= (g,U ′) where U ′ =U\{i}.
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i.e., given state γ and unaudited supplier i in γ, γ	 i is the state otherwise identical to γ but with i and all

its dependents removed.15

Given γ = (g,U) ∈ Γ, we define a mapping π : Γ→ R so that π(γ) is the buyer’s production profit if the

buyer chooses to stop auditing in state γ. It reflects the profit the buyer makes from the production activity

on supply network g. We otherwise model the auditing activity in the same way as the auditing phase in our

main model.

H.2. Results

Theorem H.1. There exists an optimal policy ξ∗ ∈Ξ with the property that auditing decisions are divided

into two subphases:

(a) ad subphase: To audit and drop (ad) some suppliers (or none); followed by

(b) rp subphase: To audit and rectify (ar) all remaining unaudited suppliers in an arbitrary sequence if

a+ur6 uwz; or to proceed to production (pp) if a+ur> uwz.

Corollary H.1. At state γ ∈ Γ, if the optimal policy ξ∗ is already in the rp subphase,

V ∗(γ) = π(γ)− crp|Uγ |. (H.1)

The proofs of Theorem H.1 and Corollary H.1 are identical to those of Theorem 3 and Corollary 1.

For the LVUS auditing result, the assumption of decreasing differences of the production profit remains

the same as in our main model (Assumption D.1). Assumption D.2 (the preservation of LVUS) now requires

a new definition of symmetric suppliers, as follows:

Definition H.1 (symmetric suppliers). Let γ = (g,U), γ′ = (g′,U ′) ∈ Γ be two (possibly identical)

states. If there exist bijections θ :Wg →Wg′ and ψ : Eg → Eg′ such that (θ,ψ) is an isomorphism between

directed graphs g and g′, and in addition i ∈ U if and only if θ(i) ∈ U ′ for all i ∈ Sg, we call the pair (θ,ψ)

an isomorphism between states γ and γ′. Let γ = (g,U)∈ Γ and i, i′ ∈Wg. We say i, i′ are symmetric or i is

symmetric with i′ if there exists an isomorphism (θ,ψ) between γ and itself such that θ(i) = i′.

Theorem H.2. Let γ0 = (g,U) ∈ Γ be such that for any γ ∈ R+(γ0), no unaudited supplier in γ is a

dependent of another unaudited supplier, i.e., any i, i′ ∈ Uγ (i 6= i′) satisfy i /∈Dg(i
′) and i′ /∈Dg(i). Under

Assumptions D.1 and D.2, the following policy ξ∗ is optimal in every state γ ∈R+(γ0):

ξ∗(γ) =

{
ad(i), if i∈Uγ , u∇(γ, i) + a< crp, and ∇(γ, i)6∇(γ, i′),∀i′ ∈Uγ

rp, if u∇(γ, i) + a> crp,∀i∈Uγ
. (H.2)

The proof of Theorem H.2 is identical to that of Theorem D.1.

15 Given γ = (g,U) ∈ Γ and i ∈ U , γ 	 i= (g′,U ′) where g′ = g[Wg\Dg(i)], the subgraph of g induced by Wg\Dg(i),
and U ′ =U ∩Wg′ .
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Appendix I: Technical Lemmas

Lemma I.1 (determinant of upper arrowhead matrix). For n ∈ N+ and n > 2, and a, b, c, d ∈ R,

then

det


a b b · · · b
c d 0 · · · 0

c 0 d
. . .

...
...

...
. . .

. . . 0
c 0 · · · 0 d


n×n

= [ad− (n− 1)bc]dn−2. (I.1)

Proof. Denote the matrix in (I.1) by Ψ. If d= 0 we expanding Ψ along the first column in the way of

Laplace to find det(Ψ) = 0 (each submatrix in the expansion has zero determinant). If d > 0 we multiply

columns 2 to n each by − c
d

and add them all to the first column to get

det(Ψ) = det


a− (n− 1) bc

d
b b · · · b

0 d 0 · · · 0
...

. . . d
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 d

 (I.2)

which, by the formula for the determinant of a diagonal matrix, is equal to the right-hand side of (I.1). �

For m,n,k ∈N0, denote by Jm,n = [1]m×n the m×n matrix of 1’s; Jn = Jn,n. Denote

Dn = In + Jn =


2 1 · · · 1

1
. . .

. . .
...

...
. . .

. . . 1
1 · · · 1 2


n×n

Q2m,n =



1 · · · 1
2 · · · 2
...

...
...

1 · · · 1
2 · · · 2
...

...
...

1 · · · 1
2 · · · 2


2m×n

R2m,n =



2 · · · 2
1 · · · 1
...

...
...

2 · · · 2
1 · · · 1
...

...
...

2 · · · 2
1 · · · 1


2m×n

. (I.3)

Denote D̃2n =Dn⊗D2, where ⊗ denotes the Kronecker product. Finally, define the two (m+2k+n)× (m+

2k+n) symmetric matrices

Λ(m,n,k) =

 2Dm RT
2k,m Jm,n

R2k,m D̃2k Q2k,n

Jn,m QT
2k,n 2Dn

 , Λ̃(m,n,k) =

 2Dm+k

[
Jm,k Jm,n
Dk Jk,n

]
[
Jk,m Dk

Jn,m Jn,k

]
2Dk+n

 . (I.4)

Lemma I.2. For m,n,k such that m+n+ k > 0, Λ̃(m,n,k) is positive definite.

Proof. Denote m′ =m+ k and n′ = n+ k. Denote

B =

[
Jm,k Jm,n
Dk Jk,n

]
so that Λ̃ =

[
2Dm′ B
BT 2Dn′

]
. (I.5)

The proof consists of two parts:

(a) 2Dm′ is positive definite;

(b) The Schur complement of 2Dm′ in Λ̃, i.e., Λ̃/(2Dm′) = 2Dn′ −BT(2Dm′)
−1B, is positive definite.
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Then by the Schur complement condition (Boyd and Vandenberghe 2004, Appendix A.5.5), Λ̃ is positive

definite, as we want.

(a) To show that 2Dm′ is positive definite, it suffices to show that every leading principal minor of Dm′ is

positive. For i∈N+, subtract the first row of Di from every other row to get

det(Di) = det


2 1 · · · · · · 1
−1 1 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
−1 0 · · · 0 1

 (I.6)

which by Lemma I.1 equals (2×1− (i−1)×1× (−1))×1i−2 = i+1> 0. Therefore 2Dm+k is positive definite.

(b) We next show that 2Dn′ −BT(2Dm′)
−1B is positive definite. Use row reduction to find

(2Dm′)
−1 =

1

2(m′+ 1)


m′ −1 · · · −1

−1
. . .

. . .
...

...
. . .

. . . −1
−1 · · · −1 m′

 . (I.7)

Then

BT(2Dm′)
−1B =

[
Jk,m Dk

Jn,m Jn,k

] 1

2(m′+ 1)


m′ −1 · · · −1

−1
. . .

. . .
...

...
. . .

. . . −1
−1 · · · −1 m′



[
Jm,k Jm,n
Dk Jk,n

]
(I.8)

=
1

2(m′+ 1)



1 · · · 1 2 1 · · · 1
...

. . .
. . .

. . .
...

...
. . .

. . . 1
...

. . . 2
... 1
...

...
1 · · · · · · · · · · · · · · · 1


n′×m′


m′ −1 · · · −1

−1
. . .

. . .
...

...
. . .

. . . −1
−1 · · · −1 m′


m′×m′

[
Jm,k Jm,n
Dk Jk,n

]
(I.9)

=
1

2(m′+ 1)



0 · · · 0 m′+ 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · · · · · · · 0 m′+ 1
1 · · · · · · · · · · · · · · · 1
...

...
1 · · · · · · · · · · · · · · · 1


n′×m′



1 · · · · · · · · · · · · · · · 1
...

...

1
...

2
. . .

...

1
. . .

. . .
...

...
. . .

. . .
. . .

...
1 · · · 1 2 1 · · · 1


m′×n′

(I.10)
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=
1

2(m′+ 1)



2(m′+ 1) m′+ 1 · · · · · · m′+ 1 m′+ 1 · · · m′+ 1

m′+ 1
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . . m′+ 1

...
...

m′+ 1 · · · · · · m′+ 1 2(m′+ 1) m′+ 1 · · · m′+ 1
m′+ 1 · · · · · · · · · m′+ 1 m′ · · · m′

...
...

...
...

m′+ 1 · · · · · · · · · m′+ 1 m′ · · · m′


n′×n′

(I.11)

=



1 1
2
· · · · · · 1

2
1
2

· · · 1
2

1
2

. . .
. . .

...
...

...
...

. . .
. . .

. . .
...

...
...

...
. . .

. . . 1
2

...
...

1
2
· · · · · · 1

2
1 1

2
· · · 1

2
1
2
· · · · · · · · · 1

2
m′

2(m′+1)
· · · m′

2(m′+1)

...
...

...
...

1
2
· · · · · · · · · 1

2
m′

2(m′+1)
· · · m′

2(m′+1)


n′×n′

. (I.12)

Therefore

2Dn′ −BT(2Dm′)
−1B =



3 3
2
· · · · · · 3

2
3
2

· · · · · · 3
2

3
2

. . .
. . .

...
...

...
...

. . .
. . .

. . .
...

...
...

...
. . .

. . . 3
2

...
...

3
2
· · · · · · 3

2
3 3

2
· · · · · · 3

2
3
2
· · · · · · · · · 3

2
7m′+8
2(m′+1)

3m′+4
2(m′+1)

· · · 3m′+4
2(m′+1)

...
... 3m′+4

2(m′+1)

. . .
. . .

...
...

...
...

. . .
. . . 3m′+4

2(m′+1)
3
2
· · · · · · · · · 3

2
3m′+4
2(m′+1)

· · · 3m′+4
2(m′+1)

7m′+8
2(m′+1)


n′×n′

. (I.13)

It only remains to show that (I.13) is positive definite. We conduct the following row operations on the

matrix so that each newly formed row i only references the rows j 6 i in (I.13), ensuring that the leading

principal minors are preserved:

(I.13)
Ri−R1−−−−→
∀i>2



3 3
2
· · · · · · 3

2
3
2

· · · · · · 3
2

− 3
2

3
2

0 · · · 0 0 · · · · · · 0
... 0

. . .
. . .

...
...

...
...

...
. . .

. . . 0
...

...
− 3

2
0 · · · 0 3

2
0 · · · · · · 0

− 3
2

0 · · · · · · 0 4m′+5
2(m′+1)

1
2(m′+1)

· · · 1
2(m′+1)

...
...

... 1
2(m′+1)

. . .
. . .

...
...

...
...

...
. . .

. . . 1
2(m′+1)

− 3
2

0 · · · · · · 0 1
2(m′+1)

· · · 1
2(m′+1)

4m′+5
2(m′+1)



(I.14)
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Ri−Rk+1−−−−−−−−→
∀i∈[k+2,k+n]



3 3
2
· · · · · · 3

2
3
2

· · · · · · · · · 3
2

− 3
2

3
2

0 · · · 0 0 · · · · · · · · · 0
... 0

. . .
. . .

...
...

...
...

...
. . .

. . . 0
...

...
− 3

2
0 · · · 0 3

2
0 · · · · · · · · · 0

− 3
2

0 · · · · · · 0 4m′+5
2(m′+1)

1
2(m′+1)

· · · · · · 1
2(m′+1)

0
...

... −2 2 0 · · · 0
...

...
...

... 0
. . .

. . .
...

...
...

...
...

...
. . .

. . . 0
0 0 · · · · · · 0 −2 0 · · · 0 2



. (I.15)

To show that (I.13) is positive definite, it suffices to show that every leading principal minor det(Mi) of

(I.15) is positive.

For i= 1, . . . , k, by Lemma I.1,

det(Mi) =

(
3× 3

2
− (i− 1)× 3

2
× (−3

2
)

)
×
(

3

2

)i−2
=

(
3

2

)i
(i+ 1)> 0. (I.16)

For i= k+ 1, (i) expanding

Mk+1 =



3 3
2
· · · · · · 3

2
3
2

− 3
2

3
2

0 · · · 0 0
... 0

. . .
. . .

...
...

...
...

. . .
. . . 0

...
− 3

2
0 · · · 0 3

2
0

− 3
2

0 · · · · · · 0 4m′+5
2(m′+1)


(I.17)

in the way of Laplace along the last row, then (ii) expanding the (k+ 1,1)th minor of Mk+1 along the last

column and (iii) applying Lemma I.1 on the (k+ 1, k+ 1)th minor of Mk+1, we get

det(Mk+1) = (−1)k+2

(
−3

2

)
(−1)(k+1) 3

2

(
3

2

)k−1
+ (−1)2(k+1) 4m′+ 5

2(m′+ 1)

[
(3)

(
3

2

)
− (k− 1)

(
3

2

)(
−3

2

)](
3

2

)k−2
. (I.18)

It simplifies to

det(Mk+1) =

(
3

2

)k+1

+
4m′+ 5

2(m′+ 1)
(k+ 1)

(
3

2

)k
> 0. (I.19)

For i= k+ 2, . . . , k+n, expand Mi along the (k+ 1)th row:

det(Mi) = (−1)k+2

(
−3

2

)
det(S1) + (−1)2(k+1) 4m′+ 5

2(m′+ 1)
det(Sk+1) +

1

2(m′+ 1)

i∑
j=k+2

(−1)k+1+j det(Sj)

(I.20)

where Sj is the submatrix of Mi formed by deleting row k+ 1 and column j. We next evaluate the det(Sj).
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(Evaluate det(S1)). Denote S
(l)
1 for l= 1, . . . , k− 1 the (i− 1− l)× (i− 1− l) submatrix of S1 obtained by

deleting rows 2, . . . , l+ 1 and columns with the same indices. In addition, let S
(0)
1 = S1. That is

S
(l)
1 =



3
2
· · · · · · · · · · · · · · · 3

2
3
2

. . .
3
2
−2 2
...

. . .

−2 2


(I.21)

where empty space represents zeros and there are k − 1− l entries of 3
2

on the subdiagonal and i− k − 1

entries of 2 on the diagonal. In particular, there is no 3
2

on the subdiagonal of S
(k−1)
1 since all of them are

deleted. Then expand S
(l)
1 successively along the second row:

det(S1) = det(S
(0)
1 ) =−3

2
det(S

(1)
1 ) = · · ·=

(
−3

2

)l
det(S

(l)
1 ) = · · ·=

(
−3

2

)k−1
det(S

(k−1)
1 ) (I.22)

=

(
−3

2

)k−1 [(
3

2

)
(2)− (i− k− 1)

(
3

2

)
(−2)

]
(2)i−k−2 = (−1)k−1

(
3

2

)k
(i− k)(2)i−k−1. (I.23)

(Evaluate det(Sk+1)).

Sk+1 =



3 3
2
· · · · · · 3

2
3
2
· · · · · · 3

2

− 3
2

3
2

0 · · · 0 0 · · · · · · 0
... 0

. . .
. . .

...
...

...
...

...
. . .

. . . 0
...

...
− 3

2
0 · · · 0 3

2
0 · · · · · · 0

0 · · · · · · · · · 0 2 0 · · · 0
...

... 0
. . .

. . .
...

...
...

...
. . .

. . . 0
0 · · · · · · · · · 0 0 · · · 0 2


(i−1)×(i−1)

≡
[

Ak×k Ek×(i−k−1)
0(i−k−1)×k 2Ii−k−1

]
. (I.24)

The submatrix A in the upper-left block is an arrowhead matrix; by Lemma I.1,

det(A) =

[
(3)

(
3

2

)
− (k− 1)

(
3

2

)(
−3

2

)](
3

2

)k−2
= (k+ 1)

(
3

2

)k
. (I.25)

Observing that the lower-left block of the matrix is a submatrix of zeros, we find

det(Sk+1) = det(A) det(2Ii−k−1) = (k+ 1)

(
3

2

)k
2i−k−1. (I.26)

(Evaluate det(Sj),∀j > k+ 1). For j > k+ 1,

Sj =

[
Ak×k Ek×(i−k−1)

0(i−k−1)×k Yj

]
(i−1)×(i−1)

(I.27)

where A and E are the same as in (I.24) and

Yj =



−2 2
...

. . .
... 2
... 0 0
... 2
...

. . .

−2 2


(i−k−1)×(i−k−1)

(I.28)



ec60 e-companion to Zhang, Aydin, and Parker: Social Responsibility Auditing in Supply Chain Networks

where, in particular, the (j− k+ 1)th row is (−2,0, . . . ,0). Expand its determinant along this row:

det(Yj) = (−1)j−k+2(−2) det(2Ii−k−2) = (−1)j−k+3(2i−k−1). (I.29)

Since the lower-left submatrix of Sj is zero, we have

det(Sj) = det(A) det(Yj) = (−1)j−k+3(k+ 1)

(
3

2

)k
(2i−k−1) (I.30)

where (I.25) is substituted for det(A).

Substitute (I.23), (I.26), and (I.30) into (I.20) to get

det(Mi) =

(
3

2

)k+1

(i− k)(2)i−k−1 +
4m′+ 5

2(m′+ 1)
(k+ 1)

(
3

2

)k
2i−k−1

+
1

2(m′+ 1)

i∑
j=k+2

(k+ 1)

(
3

2

)k
(2i−k−1)> 0. (I.31)

Therefore (I.15) is positive definite. The proof is complete. �

Lemma I.3. For m,n,k such that m+n+ k > 0, Λ(m,n,k) is positive definite.

Proof. In the following we omit the arguments (m,n,k) of the matrices Λ and Λ̃ as doing so causes no

confusion.

Rewrite Λ̃ in (I.4) by breaking up its upper-left and lower-right blocks as

Λ̃(m,n,k) =

 2Dm 2Jm,k Jm,k Jm,n
2Jk,m 2Dk Dk Jk,n
Jk,m Dk 2Dk 2Jk,n
Jn,m Jn,k 2Jn,k 2Dn


(m+2k+n)×(m+2k+n)

. (I.32)

Now the blocks in the four corners of Λ̃ are identical to the corresponding blocks in Λ. The idea is to permute

the rows and columns of Λ in between the corner blocks symmetrically to obtain Λ̃. Specifically, let P be the

(m+2k+n)×(m+2k+n) permutation matrix that leaves rows 1, . . . ,m and m+2k+1, . . . ,m+2k+n intact

and permutes rows m+ 1, . . . ,m+ 2k according to the permutation of the set {1, . . . ,2k} (where element l

corresponds to row m+ l) as follows (in Cauchy’s two-line notation):(
1 2 · · · i i+ 1 · · · k− 1 k k+ 1 k+ 2 · · · j j+ 1 · · · 2k− 1 2k
1 k+ 1 · · · i k+ i · · · k− 1 2k− 1 2 k+ 2 · · · j− k+ 1 j+ 1 · · · k 2k

)
(I.33)

where i is any odd number between 1 and k− 1 and j is any odd number between k+ 1 and 2k− 1 (all ends

inclusive), for k even, and(
1 2 · · · i i+ 1 · · · k− 2 k− 1 k k+ 1 k+ 2 · · · j j+ 1 · · · 2k− 2 2k− 1 2k
1 k+ 2 · · · i k+ i+ 1 · · · k− 2 2k− 1 k 2 k+ 3 · · · j− k+ 1 j+ 2 · · · k− 1 2k k+ 1

)
(I.34)

where i is any odd number between 1 and k−2 and j is any even number between k+ 1 and 2k−2 (all ends

inclusive), for k odd. Then Λ̃ = PΛPT.

By Lemma I.2, Λ̃ is positive definite. By Theorem 6C(V) in Strang (1980), there exists an invertible matrix

Q such that Λ̃ =QTQ . Since P is a permutation matrix, the matrix Q(P−1)T is invertible. Therefore, again

by Theorem 6C(V) in Strang (1980), (Q(P−1)T)TQ(P−1)T is positive definite. But since Λ̃ = PΛPT,

(Q(P−1)T)TQ(P−1)T = P−1QTQ(P−1)T = P−1Λ̃(PT)−1 = P−1PΛPT(PT)−1 = Λ (I.35)

implying Λ is positive definite. �
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